Physics 501 final exam Answers Monday December 17,2012, 8:00 - 10:45 am

1. 2-d Kinematics; rigid body. A stick has mass M and moment of inertia I. Itis
oriented along the y-direction. Itis free in the x-y plane, but has zero kinetic energy
for times t < 0. The center of mass of the stick is at (x,y)=(0,0) for t < 0.

a. Attime t = 0 it experiences an impulsive force Fx = Po §(t), Fy = 0. This force is
localized at a point on the stick with y-coordinate equal to yp. What is the energy of
the stick at t > 0?

A. The impulse fdtﬁ = P,x causes a change in x-momentum from 0 to Py, or a

change in linear kinetic energy of Py°’/2ZM. There is also an angular impulse
fdt? x F = y,P,2. This causes z-angular momentum to increase from 0 to ysPs. So

there is angular kinetic energy also, and the total KE = PO2 12M + yéPO2 /121.

b. Suppose the source of the impulse was a collision [this should have said, “an
elastic collision”] with a particle of mass m, which was moving in the x-y plane, in
the x direction. In terms of Py, yg, m, M, and I, what was the initial velocity vy of this
particle?

B. Linear momentum is conserved, p, = p; + PyX. Since the incident particle’s
momentum p, was in the x-direction, its final momentum ﬁf is also in the x-

direction. So momentum conservation gives us one equation for two unknowns. z-
angular momentum is also conserved, y,p, = yop; + yoFy. This does not give any
additional information. We have to use energy conservation,

po” /2m = pf2 /2m + Py /2M + y2P# /21. Combining energy and momentum

. . , 11
conservation equations, we find v, = p,/m = (— + —)PO +yoP, /21,
2M 2m

2. Dynamics; rigid body. Suppose a rigid body has three unequal principle
moments of inertia, I; < Iz < I3. Show that free rotations (no forces) around an axis
close to the I; or I3 axes are simple, but around an axis close to Iz, the body evolves in
a more complicated way.

A. This was done in Landau and Lifshitz, and in class. The kinetic energy in the
inertial frame of the center of mass is E = L} /21, + L3 /21, + L}/21,. The (vector)
angular momentum is also conserved, but the components (L,,L,,L,) are not

separately conserved, since they are changing in time as the rigid body rotates.
However, the magnitude, which is conserved, is a function of the components,

[’ =L;+ L} +15 In (L,L,,L;)-space, L? is a sphere and 2I;E is an ellipsoid. The
conservation laws constrain the motion to the intersection of the sphere and
ellipsoid. If at some time, L3 << L* and L} << L], then the sphere L2is barely
intersecting the ellipsoid in the directions of its shortest axis, and motion is confined



to this region. The vector (L,,L,,L;) is approximately (L,,0,0). This is stable
rotation around the axis of least inertia. If at some time, L} << I3 and L} << L3, then
the sphere L?is barely intersecting the ellipsoid in the directions of its longest axis,
and motion is confined to this region. The vector (L,,L,,L,) is approximately
(0,0,L;). This is stable rotation around the axis of greatest inertia. In the
intermediate case, the intersection is not confined to the vicinity of the intermediate
axis, so the motion is not a simple rotation with (L,,L,,L,) approximately (0,L,,0).
This is unstable rotation around the axis of intermediate inertia.

Alternate proof: Many students wrote the Euler equations of motion. Only one
successfully used these to prove the required behavior.

The Euler equation of motion for rigid rotation is
dL/dt + Q@ x L = 7. (1)

This is for the angular momentum in a frame rotating
(by Q) relative to the lab frame. For free rotation, the
torque T is zero, and we have, in the frame rotating with
the rigid body, using as axes the principle axes:

Ay, I — I,
p—l = 0')
dt I, 28
dQy I —1I,
= Q
dt Iz 391
Qs I, -1,
= ) D]
dt L, htk (2)

These equations correctly describe the motion, and are
consistent with energy conservation and conservation of
L? used above. To use them directly to prove stability
or instability of rotations requires care. What you need
to do is assume that initially () is near one of the axes,
say axis 1, and show that the other components (£2; and
(23, which by assumption are initially small compared to
(2;) do not increase, but rather oscillate, therefore stay-



ing small. The Euler equations then say that (at least
initially) d€2; /dt is small, so £y is constant, and

dQ, /dt = CyQ3
dQs /dt = C38,
d*Q, /dt? = —wag
d*Q3/dt* = —wiQ (3)

Where C; = Qy(I3 — I1)/I; and C3 = Qy(I, — I2) /15
are approximately constants. Notice that because we
choose I} < I, < I3, the product w} = —CyC3 is pos-
itive. Then the equations 3 show that the frequencies
25 and €23 evolve by oscillating at frequency w;. so the
angular velocity Q) lies stably close to the 1 axis. The
argument can be repeated for the 2 and 3 axes. The
product w? = —C|CY% is also positive, but the product
w3l = —CYCY is negative. When oscillations start near
the 2 axis, the small components €2; and €23 do not oscil-
late, but grow exponentially, indicating instability. The
motion may appear chaotic. However, it is not actually
chaotic. The equations are “integrable”, and I suspect
therefore that nearby initial conditions do not diverge
exponentially.

3. Normal modes of vibration. Three equal masses m are interconnected on a
circle by identical massless springs of force constant k. The unstretched springs
have length a. The circle has circumference 3a. The masses are constrained to
move in a circle, and the springs similarly constrained, bending to conform to the
circle. The problem is to determine the normal mode frequencies, and to draw
pictures to illustrate the corresponding eigenvectors.

a. One solution of Newton’s laws is “trivial.” Explain what it is. Explain what is the
corresponding eigenvector.

b. Find other solutions by any method you like. For example, you can guess. Or you
can exploit the fact that the remaining eigenvectors are orthogonal to the trivial one,
which enables you to write Newton’s laws in the non-trivial subspace asa 2 x 2
matrix.

A. The system, and a particular choice of normal mode eigenvectors, is shown below.



1 0 2
=1 Ry=[ 1 13)= [ —1
1 -1 -1

The corresponding eigenvalues are \y = wf =0,and A2 = \3 = w% = w% = 3k. The first of these is the “trivial’
eigenvector, corresponding to a uniform rotation, with no restoring force, and therefore normal mode frequency equal
to zero. The other two are degenerate with frequency w = \/f3k /m). There are many ways to find the last two eigen-
vectors and eigenvalues. The most elementary is, after finding the trivial vector, construct two orthonormal vectors
orthogonal to the trivial vector, for example, (21,29, 23) = 1,/\/f‘2)(0, 1,—1) and (2y,29,23) = 1,/\/(_(3)(2.—1.—1).
Then compute the matrix elements of V' for these two vectors, giving a 2 x 2 matrix. Equivalently, but more so-
phisticated, just guess that the vector |2) shown above might be an eigenvector, and verify that it is. Rotational
symmetry then says that two other similar vectors (ry,z9,23) = (—1,0,1) and (2, 25,23) = (1,—1,0) must also
be eigenvectors with the same eigenvalue. Yes they are. But they are not orthogonal to each other or to the first
non-trivial eigenvector. The three are overcomplete, and span a subspace of dimension 2. Any two orthogonal vectors
in this subspace will do. One final way to do it, familiar to solid state physicists, is that Bloch’s theorem tells us that
(21,20, 23) = 1/\/?'3)(1.exp(ika).exp(?ika)) should work, with ka = +£27/3. This gives vectors orthogonal to the
trivial vector, and are eigenvectors with the appropriate eigenvalue.

4. Spherical pendulum. This is a point mass that moves under gravity (g) in two
dimensions. [Note: this could have been stated better: “in three dimensions, with
two degrees of freedom.”] Think of a massless stick of length R, attached at one end
to the origin, but free to move to any angle. A point mass m is at the far end.

a. Choose appropriate coordinates and write the Lagrangian. Use this to write the
equations of motion.

b. Find the conjugate momenta and derive the Hamiltonian from them. Use this to
write the equations of motion.

¢. Show how the problem can be reduced to one-dimensional motion in an effective
potential, whose parameters depend on initial conditions. What is this effective
potential, and what initial conditions need specification?

d. Now replace the point mass by a sphere of radius r (where r < R/2). Suppose the
sphere can rotate around the axis defined by the stick. This axis passes through the



center of the sphere. (The moment of inertia of a sphere around its axis is 2Zmr?/5.)
Repeat the exercise in part a.

A. Relevant coordinates are 6 and ¢. Later, when the
rotating sphere replaces the point mass, the angle y will
also be needed. The Lagrangian and the equations of
motion are

L= (7711?2'/'2)((;2 + sin® 9(})2) + mgR cosf

doL oC . .
—— = — =mR?% = —mgRsinf + mR?sin f cos H¢?
dt 99 00
doL oL d . dLy
—— = — = —mR?sin’§p =0 = —=.
dtog o ar oY dt

B. Conjugate momenta and the Hamiltonian are

Do = — — mR2%0 Dy = — = mR? sin® ¢
be oo Pe dob

H = 0pg +<I5P¢, - L
= (172,1?2,."’2)((.?2 + sin? 9(_5)2) —mgR cos#
n2
P P
2mR?  2mR2sin’ 4
Hamilton’s equations of motion are
M _m _OH_
"~ Ops  mR2 v = dps  mR2sin?@

— mgcosf

. O : Py cos b : IH

Po=—Fp = —mgRsin§ + =y Do = 96 =
C. The angular momentum L, = p, is a constant of the motion, so the variable ¢ can
be eliminated. The equation for 6 can then be written in two ways, the second one
being the first integral of the first, ,
mR%0 = —%Ueﬁ(m Uei(8) = —mgR cosf + m};ﬁ

E = mR%60%/2 + Uer(6)
The initial conditions (0,0,¢,¢) determine the numerical value of D,

D. No student got this part completely right.



Consider a pendulum which can spin around its rigid
support, which is a symmetry axis. The pendulum free to
spin around its symmetry axis 23 is exactly equivalent to
a symmetric top except gravity has been reversed. The
inertia tensor has principal axes #;, ¥, and 23, with
moments Iy, I;, and I3. If the pendulum is a sphere,
then Iz = 27717'2/5 where r is the sphere radius. The
moments [; are mR? 4 2mr? /5, where R is the distance
from the support to the center of mass. The kinetic en-
ergy is ([,Q% 4+ [,Q2 + [,93) /2. The angular velocity is
expressed with Euler angles which have vector directions
not orthogonal to each other,

e Q = iy + 42 + s (1)
"‘\ x‘i’)‘,rr" yriocte S

(:\ The lab axis 2 lies in the 25 - 23 plane, with components
e\ sinf and cos # respectively, Thus the angular velocity is

0 = 02, + sinOdi, + (cos 0 + )i, (2)

and the kinetic energy is

KE = % [11()2 + 1, sin? 0¢? + I3(cos B + ;s’v)z] (3)
We can now take the limit where the pendulum be-
comes a point mass. Then I3 — 0 and I; — mR?. We
recover the familiar kinetic energy of the simple pendu-
lum free to swing with two degrees of freedom described
by # and ¢.

FIG. 1. Because of the symmetry of the pendulum, the axes
#1 and #2 can be chosen not to rotate with the spin of the
pendulum, but instead to rotate with the azimuthal angle
¢. The axis &7 is chosen as the line of nodes, lying in the
horizontal plane.

The rest of the problem is straightforward, once kinetic energy is correctly
formulated.

5. Canonical transformation Here is an F> - type generating function (@ - type in
Landau-Lifshitz notation): F,(q,P) = 5 P> + yimwq’ +~2imw gP. Applied to a
harmonic oscillator, it is quite a lot like the familiar raising/lowering operator
algebra used in the quantum treatment. The Hamiltonian is H = p*/2m + mw?q* /2.

a. Solve for q = q(P,Q) and p = p(Q,P).
b. Find the new Hamiltonian and the equations of motion for Q and P.

c. Solve the equations of motion for Q and P, with initial conditions q(0)=A and
p(0)=0.
d. Find g(t) and p(t).



A.

For an F3 or |P-type generating function, the relations are p = 9F, /0q and Q = 9F2/OP.
This gives

p=tmwq+V2imw P and Q=+vV2imw q+ P

Solving for q and p, we get

1 LTNW
q:VW(Q—P) and p= m; (Q+ P) and H=iwPQ

The equations of motion for the new canonical variables P and ) are

Q=09M/0P =iwQ and P = —9H/dQ = —iwP
The general solution is
Q(t) = Ae™" and P(t) = Be™ ™1,

where A and B are complex constants. The given initial conditions are
q(0) = A and p(0) = 0. Solving for P and @ in terms of p and ¢,

1 imw i 1 imw
— — C ( ==
P \/Qimw P \/ 2 ¢ and Q \/Qimw P +\/ 2 1

From these we find that A = —y/imw /2 A and B = /tmw/2 A. These are then used to find the
elementary results g(t) = A cos(wt) and p(t) = —mwAsin(wt).

6. Downhill flow A layer of fluid flows steadily downhill under gravity. The layer
has thickness h, on top of a surface inclined by

angle o. At the top surface, the pressure Py can

. z/
be taken to be zero (the flow takes place in :
vacuum.) The boundary condition on the top /

surface is that the stress, ndvy/dz, vanishes.
The transverse dimension (y) is sufficiently
long that we neglect any boundary effects in
this direction and treat the problem as two
dimensional.

a. What is the boundary condition on the lower surface (z=0, where the fluid touches
the incline)?

b. Write the Navier-Stokes equation. Simplify it to a one-dimensional differential
equation. Certain terms are zero. Explain why.

c. Find the solution that obeys the two boundary conditions.

d. Find the total discharge Q (in the x direction) per unit length (in the y-direction).
e. Compute the discharge Q (in liters/m s) for water (viscosity = 1.00 x 10-3 Pa s,
density p = 1.00 g/cm3) if the height is 0.4cm and the angle is o = 1.7° (sin 1.7° =
0.03). [1liter =103 m3 = 103 cm?3]

A. On the lower surface, the velocity is zero, vx(z=0)=0.



The Navier-Stokes equation (which assumes incompressibility) is

p [% + E-V’D‘] =—Vp+pg+nV>7
We use coordinates where the velocity vector is in the 2 direction. The flow is

steady, so 07/0t = 0. The flow is translationally invariant in the z-direction,

so V¥ = 0. The velocity vector varies only in the z-direction, normal to the

plane; (T - 6)1"' = $0:V vz = 0, so both terms on the left hand side are zero. The gravitational
force pg = pg(— cosaz + sin az). The z-component of the Navier-Stokes equation

just tells us that the pressure gradient is pg cos v, to compensate for the component

of gravity perpendicular to the plane. There is no pressure gradient in the z-direction.

The source of the pressure is confining walls, and there is no wall perpendicular

to the z-direction to establish a gradient. The non-vanishing terms of the Navier-

Stokes equation in the z-direction are pgsina + nV2uv, = 0.

The general solution, and the solution obeying the boundary conditions, are

ve = a+bz—(pgsina/2n)z%; b—(pgsina/n)h =0; a=0; vy = (pgsina/n)z(h—=z/2).

To find the mass discharge QQ, = phts, or the volume discharge, Qv = h,, we need
to average v, over the z-direction.

h
Qv =/ ve(2) = pgsinah®/3n
0

= 10%kg/m® x 9.8m/s? x 0.03 x (4 x 107%m)®/(3 x 1073Pa ) = 6 x 107°m®/m s

=6 x 107*m®/m s x 10%liter/m® = 6. liter/m s



