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1. (10 points)

~∇p = ρ~g (1)

Ideal gas EOS: (v = V
m = 1

ρ specific volume, R∗ = R
M specific gas constant)

pv =
p

ρ
= R∗T (2)

dp

dz

∣∣∣∣
T

= R∗T
dρ

dz
= −ρg (3)

R∗T ln
ρ

ρ0
= −g(z − z0) (4)

ρ(z) = ρ0 exp
g

R∗T
(z0 − z) (5)

For ideal N2 gas at z = 100m and T = 300K, ρ(z)/ρ(0) = 0.989.

Isothermal bulk modulus BT = −v ∂p
∂v

∣∣∣
T

= ρ ∂p
∂ρ

∣∣∣
T

.

dp

dz

∣∣∣∣
T

=
∂p

∂ρ

dρ

dz
=
BT
ρ

dρ

dz
= −ρg (6)

1

ρ(z)
− 1

ρ(0)
=

g

BT
(z − z0) (7)

For water at z = −100m, ρ(z)/ρ(0) = 1.00045.
2. (5 points)
For the derivation, please refer to L.L., Fluid Mechanics, section 4.

−dT
dz

<
g

cp
(8)

where cp = 7
5cv and cv = 5

2R/M . Critical size of the temperature gradient is thus −dTdz < 0.0094K/m.
Also, the derivation given in class is summarized below:
Let there be a temperature gradient dT/dz in an ideal gas under gravity. We know that hydrostatics requires
dP/dz = −ρg for this gas. We know that there will be a convective instability if a piece of gas, lifted adiabatically,
finds its density greater than that of the gas it displaced. Or, the gradient of temperature is subject to convective
instability if

1

V

(
∂V

∂z

)
adiabatic

>
1

V

(
∂V

∂z

)
actual

, (9)

where “actual” means the gradient of the system without any imposed displacement. This latter can be written

1

V

(
∂V

∂z

)
actual

=
1

V

(
∂V

∂z

)
T

+
1

V

(
∂V

∂T

)
P

(
∂T

∂z

)
actual

. (10)

For the adiabatic case, use pV γ = const and the equation of hydrostatics to write

1

V

(
∂V

∂z

)
adiabatic

=
ρg

γP
. (11)

For the “actual” case, we need the ideal gas result

1

V

(
∂V

∂T

)
P

=
1

T
. (12)
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This enables the condition for instability to be written

ρg

γP
>
ρg

P
+

1

T

(
∂T

∂z

)
actual

. (13)

Rearranging this equation, the condition for convective instability is

−
(
∂T

∂z

)
actual

>

(
1− 1

γ

)
ρgT

P
. (14)

The derivation above is the one given in class. Landau and Lifshitz solve the problem more generally in section 4 of
Fluid Mechanics. Their result does not assume an ideal gas, and gives the condition for instability as

−
(
∂T

∂z

)
actual

>
ρgT

CpV

(
∂V

∂T

)
P

. (15)

If you work this out for an ideal gas, you recover the same result.
Numerically, the problem asks “Consider a large, thermally insulated tank of N2 gas, under gravity, at P0= 1 atm
and T0 = 300K, with a uniform temperature gradient dT/dz < 0. ... You can treat N2 as a diatomic ideal gas, with
CP /CV = γ = 7/5.” The numerical answer is that instability occurs when −dT/dz > 0.0094 K/m.
3. (15 points)
Equation for the velocity potential is Laplace equation assuming irrotational flow:

~∇2Φ = 0 (16)

Boundary conditions:

(
∂Φ

∂z
+

1

g

∂2Φ

∂t2
)

∣∣∣∣
z=0

= 0 (17a)

vz|z=−h =
∂Φ

∂z

∣∣∣∣
z=−h

= 0 (17b)

Φ = A cos(kx− ωt) cosh k(z + h) (18)

ω2 = gk tanh kh (19)

It can be easily seen that in the limiting cases λ� h and λ� h, ω2 = gk and ω =
√
ghk respectively.

vg = ∂ω
∂k = 1

2

√
g tanh kh

k + gkh
2
√
gk tanh kh cosh2 kh

(20a)

vp = ω
k =

√
g
k tanh kh (20b)

Group velocity is shown below:

4. (15 points)
N-S equation reads:

~f − ~∇p+ η~∇2~v = ρ[
∂~v

∂t
+ (~v · ~∇)~v] (21)

Assume steady laminar flow along the axis of the cylinder ŷ, then vy = v, vx = vz = 0,
∂vy
∂t = 0. Ignore the effect of

gravity, we thus have ~f = 0. From the continuity equation, we have (for imcompressible fluid) ∂vx
∂x +

∂vy
∂y + ∂vz

∂z = 0,

and thus
∂vy
∂y = 0. N-S equations reduce to

∂p
∂y − η(

∂2vy
∂x2 +

∂2vy
∂z2 ) = 0 (22a)

1
ρ
∂p
∂x = 1

ρ
∂p
∂z = 0 (22b)
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From (22b), we know that p = p(y), thus ∂p
∂y = dp

dy , and we can further assume dp
dy = −∆p

l if the laminar flow is fully

developed. Now turn to cylindrical coordinates, we should readily have

∂2v

∂r2
+

1

r

∂v

∂r
+

1

r2

∂2v

∂θ2
=

1

η

dp

dy
(23)

Remember that v = v(r), then 1
r
d
dr (r drdv ) = − 1

η
∆p
l . Thus r dvdr = − 1

η
∆p
l
r2

2 +C1, and v = −∆p
4ηlr

2 +C1 ln r+C2. Because

v|r=0 must be finite, we have C1 = 0. Also, v|r=r0 = 0, we have C2 = ∆p
4ηlr

2
0. Finally, we have v = ∆p

4ηl (r
2
0 − r2). Rate

of flow is then q =
∫
vdA =

∫ r0
0

2πrvdr = π∆p
8ηl r

4
0. At 25◦C, the viscosity of water is 8.94 × 10−4Pa · s, the pressure

gradient is then 1.4×106Pa/m. The power required to deliver this water over a 10m distance is ∆p
l Lq = 1.4×105Watt.


