1. (10 points)

Vp = pj (1)
Ideal gas EOS: (v = % = % specific volume, R* = % specific gas constant)
pYv = P_pRrr (2)
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For ideal Ny gas at z = 100m and T = 300K, p(z)/p(0) = 0.989.
Isothermal bulk modulus By = —v 92| = p %/ .
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For water at z = —100m, p(z)/p(0) = 1.00045.
2. (5 points)
For the derivation, please refer to L.L., Fluid Mechanics, section 4.

where ¢, = ¢, and ¢, = 3R/M. Critical size of the temperature gradient is thus 7% < 0.0094K /m.
Also, the derivation given in class is summarized below:

Let there be a temperature gradient dT/dz in an ideal gas under gravity. We know that hydrostatics requires
dP/dz = —pg for this gas. We know that there will be a convective instability if a piece of gas, lifted adiabatically,
finds its density greater than that of the gas it displaced. Or, the gradient of temperature is subject to convective

instability if
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where “actual” means the gradient of the system without any imposed displacement. This latter can be written
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For the adiabatic case, use pV? = const and the equation of hydrostatics to write
1
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For the “actual” case, we need the ideal gas result
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This enables the condition for instability to be written
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Rearranging this equation, the condition for convective instability is
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The derivation above is the one given in class. Landau and Lifshitz solve the problem more generally in section 4 of
Fluid Mechanics. Their result does not assume an ideal gas, and gives the condition for instability as

oT pgl (OV
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If you work this out for an ideal gas, you recover the same result.

Numerically, the problem asks “Consider a large, thermally insulated tank of Ny gas, under gravity, at Po= 1 atm
and Ty = 300K, with a uniform temperature gradient d7'/dz < 0. ... You can treat Ny as a diatomic ideal gas, with
Cp/Cy =~ =17/5" The numerical answer is that instability occurs when —dT'/dz > 0.0094 K/m.

3. (15 points)

Equation for the velocity potential is Laplace equation assuming irrotational flow:

V20 =0 (16)
Boundary conditions:
(gf+;a;tf) = (17)
wlen=%] =0 (170)
® = Acos(kx — wt) cosh k(z + h) (18)
w? = gk tanh kh (19)

It can be easily seen that in the limiting cases A < h and A > h, w? = gk and w = \/ghk respectively.

_ Ow _ 1 gtanh kh gkh
Vg =9k = 2V k +3 gk tanh kh cosh? kh (20a)
vy, = ¢ = /1 tanh kh (20b)

Group velocity is shown below:

4. (15 points)
N-S equation reads:

F=Vp+ v = p[ % + (- V)i (21)

Assume steady laminar flow along the axis of the cylinder g, then vy, = v,v, = v, =0, % = 0. Ignore the effect of

vy vy v, __
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gravity, we thus have f = 0. From the continuity equation, we have (for imcompressible fluid)

and thus %Lyy = 0. N-S equations reduce to

2’U 2’U
(G +52)=0 (22a)

Fyin(aaﬂ +

10p _ 10p __
EFZ_E(TZZ)_O (22b)




14
0.5
0.5 ff
0.4
0z
2 4 & g
06255 4
0625 4
06245 4
0624 4
05233 1
0.2 02 | 04 08 08 1 12 14
From (22b), we know that p = p(y), thus ap = Zp , and we can further assume g —=P if the laminar flow is fully

developed. Now turn to cylindrical coordlnates we should readily have

v 10v 1 0% 1ldp
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8r2+7"8r+r2802 ndy (23)
Remember that v = v(r), then 14 (r40) = ;Alp Thus r2¢ = —%Tp% Cy,and v = —4%’;7’24—01 Inr+Cs. Because
vl,—o must be finite, we have C1 = 0. Also, v[,_, =0, we have Cy = %ro Finally, we have v = zf;ﬁ (r2 —r?). Rate

of flow is then ¢ = [vdA = [J° 2mrvdr = %Alpro At 25°C, the viscosity of water is 8.94 x 107*Pa - s, the pressure
gradient is then 1.4 x 106 Pa/m. The power required to deliver this water over a 10m distance is Tqu = 1.4x10°Watt.



