1. (10 points)

$$
\begin{equation*}
\vec{\nabla} p=\rho \vec{g} \tag{1}
\end{equation*}
$$

Ideal gas EOS: $\left(v=\frac{V}{m}=\frac{1}{\rho}\right.$ specific volume, $R^{*}=\frac{R}{M}$ specific gas constant)

$$
\begin{gather*}
p v=\frac{p}{\rho}=R^{*} T \tag{2}\\
\left.\frac{d p}{d z}\right|_{T}=R^{*} T \frac{d \rho}{d z}=-\rho g \tag{3}\\
R^{*} T \ln \frac{\rho}{\rho_{0}}=-g\left(z-z_{0}\right) \tag{4}\\
\rho(z)=\rho_{0} \exp \frac{g}{R^{*} T}\left(z_{0}-z\right) \tag{5}
\end{gather*}
$$

For ideal N_{2} gas at $z=100 m$ and $T=300 K, \rho(z) / \rho(0)=0.989$.
Isothermal bulk modulus $B_{T}=-\left.v \frac{\partial p}{\partial v}\right|_{T}=\left.\rho \frac{\partial p}{\partial \rho}\right|_{T}$.

$$
\begin{gather*}
\left.\frac{d p}{d z}\right|_{T}=\frac{\partial p}{\partial \rho} \frac{d \rho}{d z}=\frac{B_{T}}{\rho} \frac{d \rho}{d z}=-\rho g \tag{6}\\
\frac{1}{\rho(z)}-\frac{1}{\rho(0)}=\frac{g}{B_{T}}\left(z-z_{0}\right) \tag{7}
\end{gather*}
$$

For water at $z=-100 m, \rho(z) / \rho(0)=1.00045$.
2. (5 points)

For the derivation, please refer to L.L., Fluid Mechanics, section 4.

$$
\begin{equation*}
-\frac{d T}{d z}<\frac{g}{c_{p}} \tag{8}
\end{equation*}
$$

where $c_{p}=\frac{7}{5} c_{v}$ and $c_{v}=\frac{5}{2} R / M$. Critical size of the temperature gradient is thus $-\frac{d T}{d z}<0.0094 K / m$.
Also, the derivation given in class is summarized below:
Let there be a temperature gradient $\mathrm{dT} / \mathrm{dz}$ in an ideal gas under gravity. We know that hydrostatics requires $d P / d z=-\rho g$ for this gas. We know that there will be a convective instability if a piece of gas, lifted adiabatically, finds its density greater than that of the gas it displaced. Or, the gradient of temperature is subject to convective instability if

$$
\begin{equation*}
\frac{1}{V}\left(\frac{\partial V}{\partial z}\right)_{\text {adiabatic }}>\frac{1}{V}\left(\frac{\partial V}{\partial z}\right)_{\text {actual }} \tag{9}
\end{equation*}
$$

where "actual" means the gradient of the system without any imposed displacement. This latter can be written

$$
\begin{equation*}
\frac{1}{V}\left(\frac{\partial V}{\partial z}\right)_{\text {actual }}=\frac{1}{V}\left(\frac{\partial V}{\partial z}\right)_{T}+\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P}\left(\frac{\partial T}{\partial z}\right)_{\text {actual }} \tag{10}
\end{equation*}
$$

For the adiabatic case, use $p V^{\gamma}=$ const and the equation of hydrostatics to write

$$
\begin{equation*}
\frac{1}{V}\left(\frac{\partial V}{\partial z}\right)_{\text {adiabatic }}=\frac{\rho g}{\gamma P} \tag{11}
\end{equation*}
$$

For the "actual" case, we need the ideal gas result

$$
\begin{equation*}
\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P}=\frac{1}{T} \tag{12}
\end{equation*}
$$

This enables the condition for instability to be written

$$
\begin{equation*}
\frac{\rho g}{\gamma P}>\frac{\rho g}{P}+\frac{1}{T}\left(\frac{\partial T}{\partial z}\right)_{\text {actual }} \tag{13}
\end{equation*}
$$

Rearranging this equation, the condition for convective instability is

$$
\begin{equation*}
-\left(\frac{\partial T}{\partial z}\right)_{\text {actual }}>\left(1-\frac{1}{\gamma}\right) \frac{\rho g T}{P} \tag{14}
\end{equation*}
$$

The derivation above is the one given in class. Landau and Lifshitz solve the problem more generally in section 4 of Fluid Mechanics. Their result does not assume an ideal gas, and gives the condition for instability as

$$
\begin{equation*}
-\left(\frac{\partial T}{\partial z}\right)_{\text {actual }}>\frac{\rho g T}{C_{p} V}\left(\frac{\partial V}{\partial T}\right)_{P} \tag{15}
\end{equation*}
$$

If you work this out for an ideal gas, you recover the same result.
Numerically, the problem asks "Consider a large, thermally insulated tank of N_{2} gas, under gravity, at $\mathrm{P}_{0}=1 \mathrm{~atm}$ and $\mathrm{T}_{0}=300 \mathrm{~K}$, with a uniform temperature gradient $d T / d z<0$... You can treat N_{2} as a diatomic ideal gas, with $C_{P} / C_{V}=\gamma=7 / 5$." The numerical answer is that instability occurs when $-d T / d z>0.0094 \mathrm{~K} / \mathrm{m}$.
3. (15 points)

Equation for the velocity potential is Laplace equation assuming irrotational flow:

$$
\begin{equation*}
\vec{\nabla}^{2} \Phi=0 \tag{16}
\end{equation*}
$$

Boundary conditions:

$$
\begin{gather*}
\left.\left(\frac{\partial \Phi}{\partial z}+\frac{1}{g} \frac{\partial^{2} \Phi}{\partial t^{2}}\right)\right|_{z=0}=0 \tag{17a}\\
\left.v_{z}\right|_{z=-h}=\left.\frac{\partial \Phi}{\partial z}\right|_{z=-h}=0 \tag{17b}\\
\Phi=A \cos (k x-\omega t) \cosh k(z+h) \tag{18}\\
\omega^{2}=g k \tanh k h \tag{19}
\end{gather*}
$$

It can be easily seen that in the limiting cases $\lambda \ll h$ and $\lambda \gg h, \omega^{2}=g k$ and $\omega=\sqrt{g h} k$ respectively.

$$
\begin{gather*}
v_{g}=\frac{\partial \omega}{\partial k}=\frac{1}{2} \sqrt{\frac{g \tanh k h}{k}}+\frac{g k h}{2 \sqrt{g k \tanh k h} \cosh ^{2} k h} \tag{20a}\\
v_{p}=\frac{\omega}{k}=\sqrt{\frac{g}{k} \tanh k h} \tag{20b}
\end{gather*}
$$

Group velocity is shown below:
4. (15 points)

N -S equation reads:

$$
\begin{equation*}
\vec{f}-\vec{\nabla} p+\eta \vec{\nabla}^{2} \vec{v}=\rho\left[\frac{\partial \vec{v}}{\partial t}+(\vec{v} \cdot \vec{\nabla}) \vec{v}\right] \tag{21}
\end{equation*}
$$

Assume steady laminar flow along the axis of the cylinder \hat{y}, then $v_{y}=v, v_{x}=v_{z}=0, \frac{\partial v_{y}}{\partial t}=0$. Ignore the effect of gravity, we thus have $\vec{f}=0$. From the continuity equation, we have (for imcompressible fluid) $\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}+\frac{\partial v_{z}}{\partial z}=0$, and thus $\frac{\partial v_{y}}{\partial y}=0$. N-S equations reduce to

$$
\begin{gather*}
\frac{\partial p}{\partial y}-\eta\left(\frac{\partial^{2} v_{y}}{\partial x^{2}}+\frac{\partial^{2} v_{y}}{\partial z^{2}}\right)=0 \tag{22a}\\
\frac{1}{\rho} \frac{\partial p}{\partial x}=\frac{1}{\rho} \frac{\partial p}{\partial z}=0 \tag{22b}
\end{gather*}
$$

From (22b), we know that $p=p(y)$, thus $\frac{\partial p}{\partial y}=\frac{d p}{d y}$, and we can further assume $\frac{d p}{d y}=-\frac{\Delta p}{l}$ if the laminar flow is fully developed. Now turn to cylindrical coordinates, we should readily have

$$
\begin{equation*}
\frac{\partial^{2} v}{\partial r^{2}}+\frac{1}{r} \frac{\partial v}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} v}{\partial \theta^{2}}=\frac{1}{\eta} \frac{d p}{d y} \tag{23}
\end{equation*}
$$

Remember that $v=v(r)$, then $\frac{1}{r} \frac{d}{d r}\left(r \frac{d r}{d v}\right)=-\frac{1}{\eta} \frac{\Delta p}{l}$. Thus $r \frac{d v}{d r}=-\frac{1}{\eta} \frac{\Delta p}{l} \frac{r^{2}}{2}+C_{1}$, and $v=-\frac{\Delta p}{4 \eta l} r^{2}+C_{1} \ln r+C_{2}$. Because $\left.v\right|_{r=0}$ must be finite, we have $C_{1}=0$. Also, $\left.v\right|_{r=r_{0}}=0$, we have $C_{2}=\frac{\Delta p}{4 \eta l} r_{0}^{2}$. Finally, we have $v=\frac{\Delta p}{4 \eta l}\left(r_{0}^{2}-r^{2}\right)$. Rate of flow is then $q=\int v d A=\int_{0}^{r_{0}} 2 \pi r v d r=\frac{\pi \Delta p}{8 \eta l} r_{0}^{4}$. At $25^{\circ} \mathrm{C}$, the viscosity of water is $8.94 \times 10^{-4} \mathrm{~Pa} \cdot s$, the pressure gradient is then $1.4 \times 10^{6} \mathrm{~Pa} / \mathrm{m}$. The power required to deliver this water over a 10 m distance is $\frac{\Delta p}{l} L q=1.4 \times 10^{5} \mathrm{Watt}$.

