1. Explain how the Foucault pendulum works, and how its period depends on latitude (angle θ measured between equator and north pole from the center of the earth.) You can assume small angle oscillation, but it that really necessary?

2. Suppose a particle of mass m and charge q has a Lagrangian $L = m\dot{\vec{v}}^2/2 + q\vec{v} \cdot \vec{A}(\vec{r}) - U(\vec{r})$.
 (a) Find the canonical momentum \vec{p} and the Hamiltonian $H(\vec{r}, \vec{p})$.
 (b) Write Hamilton’s equations of motion.
 (c) Show carefully how to get the correct Newtonian equation $m\ddot{\vec{v}}/dt = \vec{F}$ (here $\vec{A}(\vec{r})$ does not depend on time.)
 (d) Suppose $\vec{A}(\vec{r}, t)$ does depend on time, and that $U(\vec{r}, t) = q\Phi(\vec{r}, t)$. Repeat part (c).

3. A bug crawls on a rotating turntable (its axis is perpendicular to the plane of the turntable. Gravity is also perpendicular. The bug’s coordinates are (x_0, y_0) or (r_0, ϕ_0) in the lab frame, and (x, y) or (r, ϕ) in coordinates of the frame rotating with the turntable, and origin at the axis. The polar angle ϕ changes relative to the lab version in some fashion described by $\phi = \phi_0 + \dot{\theta}(t)$.
 (a) Explain why (or under what interpretation) it is indeed correct and appropriate to express the Lagrangian this way in mixed coordinates.
 (b) Rewrite the Lagrangian in rotating coordinates; find the momenta canonically conjugate to (r, ϕ); show that $H_{\text{rotating}} = H_{\text{lab}} - \dot{\theta} p_\phi$. Does it make sense that H_{lab} is the same as H_{rotating} when $\dot{\theta} = 0$?

4. The “phase portrait” is a diagram of the possible phase paths in the (p,q) phase space. Suppose we have a particle of mass m moving in one dimension, for positive x, under the potential $U(x) = \varepsilon[(\sigma/x)^{12} - (\sigma/x)^{6}]$ (the “Lennard-Jones” potential. Sketch the phase portrait.