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444 Linear systems and Floquet theory

in the description of dynamical systems with parameters that vary Periodicy
time; for instance the vertical pendulum with a point of support that moves peri
as in exercise 12.38 (page 475).

In order to provide some idea of how such systems can behave, we start this geq
with a description of two systems. Both examples are essentially vertica] pendy]
and in each case the length is made to vary periodically. With the correct choige ¢ |
this period it is shown that the energy (that is the amplitude of the SWing) Can{(;
made to increase rapidly. The method of supplying energy to a system wherehy Systes
parameters are varied periodically is known as parametric pumping. S

ly With '
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12.3.2 Parametric resonance: the swing
The first example of parametric resonance with which you are bound to be familjyy
a child on a playground swing. Very careful observation of the child shows thgt the
amplitude of the motion is increased by the rhythmical bending and straightenjng o
the child’s body with the effect that the centre of mass is raised as the swing passesﬁf;j
through its lowest point and lowered when the swing reaches its highest point An -
idealisation of this motion is obtained by treating the swing and child as a vertjgy
pendulum with shifts in the centre of mass taking place instantancously at the loweg

and highest points, as shown in the diagram. The advantage of this approximationj; -
that we can understand the motion without solving any differential equations, although
conservation of angular momentum and energy are needed. '
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Figure 12.1
During each quarter oscillation, when the length L of the pendulum is constant, th&_T
swing behaves like the vertical pendulum for which the energy is

1 .
E = —ijzez —mglLcos@,

where 0 is the angle between the swing and the downward vertical. Suppose that Fhf 4
system is released from rest at an angle § = o; with length L, then the angular veloctj
§ = w; at the bottom, where 0 = 0, is obtained using the energy equation

—_

4g
;L%a)f =gLy(l —cosoy) or a)f — Li; sin“ (o1 /2).
. . e s
At the bottom the length changes instantaneously from L; to Ly < Lj, and since th,‘
. ; , . o
velocity change is towards the point of support, angular momentum, mL20, is conserV




he

the
ity

the
ved

by

12.3 Floquet theory 445

and immediately after this length change the angular velocity, w,, is larger and given

2

2 2 1
Liwy = Lywy or my = Pcm > 1. (12.6)

2

- The amplitude, 22, of the next quarter swing can be related to ; using the energy

equation again,
4z

b .2 (%2
—gl,=—glycosoy O w;= 4 SN~ <—> .
- Lz 2

But since w; and wy are related by equation 12.6 we can obtain a relation between
wccessive amplitudes and the lengths L, and Lo,

L3 sin® (%‘) — L3 sin’ (“5) (12.7)

When the swing reaches its maximum amplitude, 6 = oy, its length is returned

Lo

[N}
[S] 6]

SR

instantaneously to L. Again angular momentum is conserved, but at this point on the
_ swing the angular velocity is zero so remains unchanged. Thus the swing starts its next
 half cycle with length L; but from the larger amplitude o5.

This procedure can be performed on each swing, so after passing through the lowest
point N times we have, on setting Ly = Ly + h,

a(2) = (1 1) o) = (52) 0 (5),

Thus the amplitude increases exponentially with N. After a finite number of swings the
right hand side of this equation becomes larger than unity and the theory is invalid:
this happens when the system has sufficient energy for the swing to rotate round the
swpport. In practice a real swing does not increase its amplitude so rapidly because the
thanges in length take place more gradually and not precisely at the optimum point.
lAnother simple example of parametric resonance is the child’s toy, shown in the
tiagram, comprising a disc suspended on a loop of thread which can be made to spin
alternately in opposite directions by pulling the loops twice in each complete cycle.
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Dalrzristth the§e examples large ampl.itude motion is Pl‘OdLlCed by‘changing the sys.ter.n
picl Ers with a frequency of twice the natural Ircqgcncy of the sy\stem. This 1s
eSYS’terit the frequency df)es not have to k?e exactly tw1Fe the natural treqL.lency, ™y
obler 1 tCan be pa.rametnctally pumped with a nearby trequency.. and Qne important
oy Paralo deFermme Fhe width of the frequency ba‘nd roun'd 2w In wl\ncl? resonan@s
e metric purppmg .ca-n al.so occu.r near the frequencies 2wq/n, for integer n; 1n
Mple of the swing this is fairly obvious as we need only pump on every alternate

Pags ¢
frough the bottom, for instance.
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12.3.3 O Botafumeiro: parametric pumping in the middle ages
One of the oldest recorded examples of parametric pumping is swinging the o
censer, O Botafumeiro, in the cathedral of Santiago in Santiago de Composte]a, a4
in Galicia in northwest Spain. This cathedral was a pilgrims’ shrine, famous thmugho
Christendom during the middle ages. The censer, with coals, weighs about 57 ke
hangs in the transept; it swings on a rope about 21m long with a maximum ampli
of about 80° and has a period of about 10 seconds; near the bottom of the SWing j
travelling at about 68 km/hr (about 40 mph) half a metre above the floor,
Producing and maintaining such motion is far from trivial, but the rite of Pumpiy
O Botafumeiro appears to be about 700 years old, for the cathedral was built betwe g
the years 1078 to 1211, on the site of an older one destroyed by Almanzor, the Military
commander of the Moorish caliphate of Cordoba, in AD 997. The first recorded' :
of the censer is a 14th century margin note in the Codex, Liber Sancti Jacobi donateg
to the cathedral in about 1150: so we know that the rite of pumping O Botafumeiyy
started between 1150 and 1325, that is at least four centuries before the penduluny Wﬂs
studied scientifically.
The motion is started by moving the censer off the vertical to let it swing like
pendulum; then a team of men cyclically pull at cords attached to the upper end of i
rope in order to decrease and increase its length as it passes through the lowest ap
highest points of the motion, as shown schematically in figure 12.1. Here the similarit
with the child’s swing ends. In that example of parametric pumping no formal
are needed: a child never formulates the mechanism by which it pumps the swing. By
O Botafumeiro needs a team effort, the chief verger calling orders where required;,{
obtain motion with an amplitude of about 80° roughly 17 pumping cycles are require
and the total time taken is about 80 seconds. There is some evidence that at some poi
the rules for pumping became understood and transmitted to other local cathedral
there are records of the cathedrals at Orense and Tuy (respectively 100 km SEan
S of Santiago), but there are no records of the large gold censer at old St Peter's
Rome ever having been set in motion. ‘

The motion of O Botafumeiro is said to be an impressive sight. It clearly impos
significant strains on the supports, with the result that several accidents have occurre
When pumping, the highest tensions in the ropes occur at the top and bottom of
the swing, so it is here that the rope is most likely to break; the recorded acciden

support this view. In 1622 the rope broke and the censer fell vertically, just missing th,ef
men pulling at the rope, suggesting that the break occurred near the highest point. Iﬂ

1499 the chains attached to the censer broke and it landed at the side of the transept,
crushing the door about 30 m from the centre of the swing; this could happen onl){lf

the amplitude of the motion was large and the break occurred near the bottom of the.

swing.

The dynamics of O Botafumeiro is complicated; in particular the amplitude of t?xe
motion is too large for the linear approximation to be made, the rope is heavy SO}“
mass needs to be taken into account, partly because at the highest point of the swii
it is far from straight, and air resistance needs to be included. Nevertheless this syste®
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¢ been studied, Sanmartin (1984), and the theoretical motion agrees well with its
a

ciual motion.

]203,4 One-dimensional linear systems
First-order linear syst.ems are relatively easy to understand and serve as a useful stepping
Jone to MOTe complicated systems. The most general homogeneous, first-order system
pas the form

dx

P a(t)x,
ghere a(t) s a T-periodic function of time, a(t + T) = a(¢) for all ¢. This equation can
pe solved by direct integration,

x(t) = x(tg) exp (/[ ds a(S)> ;

put it is more helpful to use methods that can easily be generalised to higher-
gimensional systems that cannot be integrated.

The linearity of the equations and the periodicity of the coefficient impose constraints
ypon the possible types of solution: if x(r) is a solution then the function y(t) = x(t+T)
is also a solution because

dy d _dx(t+T)
PR e A T 0%

(12.8)

(12.9)

at+ T)x(t+ T)
= a(t)y(r).

Hence x(t + T) and x(¢) satisfy the same equation. They are, however, not necessarily
the same function, but because the differential equation is first-order and linear there
isonly one linearly independent solution, so we must have

x(t+T) = cex(1), (12.10)
where ¢ is a constant, independent of ¢.
Exercise 12.13
Show that for any integer n,
x(to +nT) = "x(tg) (12.11)

and use equation 12.9 to deduce that

T
¢ =exp </ dta(t)> .
0

What property of a(t) is required for x(¢) to be periodic?

Fquation 12.11 has a particularly simple interpretation. If ¢ > 1 then ¢" grows expo-
tentially with increasing n, so the solution x(t) also increases exponentially. But if ¢ < 1
tien ¢" — 0 a5 y — o0, 50 x(t) — 0 as t — oo. In the special case ¢ = 1, x(¢t + T') = x(1),

for a1) t, and the solution is periodic: this occurs only when the mean value of a(t) is
Zr0,




