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Linear slr.stenrs and Floquet theorl,

in the description of dynamical systems with parameters that vary periodicatt., 
.

time; for instance the vertical pendulum with a point of support that t ou.r Or,'0,i,.].th
as in exercise 12.38 (page 475). -'"cu!.:

In order to provide some idea of how such systems can behave, we start thisr"*,..1
ivith a description of trvo systems. Both exampies are essentially verticai o."n.,l'oo
and in each case the length is made to vary periodically. With the .orr..t ,#T
this period it is shown that the energy (that is the amplitude of the ,rinnr 

""1 
,u',

made to increase rapidly. The method of supplying energy to a syst "' 'uu 0{

parameters are varied periodically is known as paranrctri, nu,,,r,nr'.^ 
wnereby 

systern

12.3.2 Pararnetric resonance: the swing

The first exarnple of parametric resonance uith which you are bound to be familiarir

a child on a playground swing. Very carefui observation of the child shows thar 16,

amplitude of the motion is increased by the rhythmical bending and straightenins 
nf

the child's body with the effect that the centre of mass is raised as the swing paises

through its lowest point and lowered when the swing reaches its highest point. fu,..
idealisation of this motion is obtained by treating the swing and child as a vertical

pendulum with shifts in the centre of mass taking place instantaneously at the lowe,1,.

and highest points, as shown in the diagram. The advantage of this approximationisi,,

that we can understand the motion without solving any differential equations, althou$.

conservationofangu1armomentumandenergyareneeded.

Figure 12.1 
,,,,,

During each quarter ossillation, when the length L of the pendulum is constant, the

swing behaves like the vertical pendulum for which the energy is .:

n : lrnr2 62 - mgL cos 0, :

where 0 is the angle between the swing and the downward vertical. Suppose that the

system is released from rest at an angle 0 : at with length L1, then the angular veloclty

0 : ott at the bottom, where 0 : 0, is obtained using the energy equation ::

4,1 A

';-'

ty

l-4o

Ztiri : SLl] - cos d1 ) or ,ri : i sin-(ql2).

At the bottom the length changes instantaneously from L1 ro L2. ft:lld tttTj$

velocity change is towards the point of support, angular momentum, tnL'A,ts consst'"'
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rnd rmmediatelY after

by
12

L]o4 : 7]u,,t or 6-1, : \rttv )' 01. 02'6)

the next quarter swing can be related to co2 using the energy
the amPlitude, ctY of

squation again,
1t-)

^f|r,t1 - 
gLz: -gL2cosa2 or oi:

t'

}ut since @1 and a2 &re related by equation 12'6 we

successive amplitudes and the lengths Lt and Lz,

Llsin2 (?) : ti'*' (?) .

When the swing reaches its maximum amplitude, 0 : fl2, its length is returned

mstantaneously to1,. Again angular momentum is conserved, but at this point on the

this length change the angular velocity, o2, is larger and given

4g r /dr\
t sln- (t/

can obtain a relation between

(12.7)
N

P

rf

is

l
il
1l

il

:"lt
,L

,,joiilg the ungulu, veiocity is zero so rem.ins unchanged. Thus the swing starts its next

"half 
cycle with length L1 but from the larger amplitude a2'

li'.This procedure can be performed on each swing, so after passing through the lowest

point N times we have, on setting Lt : Lz I h,

^,^ ldN-t \ - 
/, l, \" ' ^,^ (atr /3Nh\ /o, ).sin(*'):-) : l, -,r.) sin(, J -.*p\zrr/''n( z/'

Jhus the amplitude increases exponentially with l{. After a finite number of swings the

right hand side of this equation becomes larger than unity and the theory is invalid:
this happens when the system has sgfficient energy for the swing to rotate round the

support. In practice a real swing does not increase its amplitude so rapidly because the

changes in length take place more gradually and not precisely at the optimum point.

Another simpie example of parametric resonance is the child's toy, shown in the

diagram, comprising a disc suspended on a loop of thread which can be made to spin
altelnately in opposite directions by pulling the loops twice in each complete cycle.

.)--''

- 
In both these examples large amplitude motio'r is produced by changing the system

parameters 
with a fr.qo.n.y of tvtice the natural frequency of the system. This is

UPical, but the frequency does not have to be exactly twice the nattiral frequency, cos:

uesystem 
can be parametrically pumped with a nearby frequency, and one important

l-uo'.t 1, to determine the width of the freqr-rency band round 2r,)0 in which resonances

ilut Pu.u.n.tric pumping can also occur near the frequenctes 2o41f n' for integer n; in

^lll*1*ot. 
oithe swing this is fairly obvious as rve need only pump on every zrlternate

r"Js through the bottom. for instance.

the

fi

'-z
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12.3.3 O Botafumeiro: parantetric prurtpittg in the niddle ages

One of the oldest recorded examples of parametric pumping is swinging 16, *
censer, O Botafumeiro, in the cathedral of Santiago in Santiago de Composteln, 

n

in Galicia in northwest Spain. This cathedral was a pilgrims' shrine, famous throu

Christendom during the middle ages. The censer, rvith coals, weighs about SZ {,
hangs in the transept; it swings on a rope about 21m long with a maximum aqp!1

of about 80' and has a period of about 10 seconds; near the bottom of the swrnsi

traveliing at about 68 km/hr (about 40 mph) half a metre above the floor. " -l

Producing and maintaining such motion is far from trivial, but the rite of pumnil

O Botafumeiro appears to be about 700 years old, for the cathedral was built

the years 1078 to 1211, on the site of an older one destroyed by Almanzor, the

commander of the Moorish caliphate of Cordoba, in AD 99'7. The first recordeJ

of the censer is a 14th century margin note in the Codex, Liber Sancti Jacobi

to the cathedral in about 1150: so we know that the rite of pumping O Botafumjii

started between 1150 and 1325, Ihat is at least four centuries before the pendulum

studied scientifically

The motion is started by moving the censer off the vertical to let it swing'hkJ,:

pendulunr; then a team of men cyclically pul1 at cords attached to the upper end of $
rope in order to decrease and increase its length as it passes through the lowest ai

highest points of the motion, as shown schematically in flgure 12.1' Here the

with the child's swing ends. In that example of parametric pumping no formal

are needed: a child never formulates the mechanism by which it pumps the swing.

O Botafumeiro needs a team effort, the chief verger calling orders where requiredl

obtain motion with an ampiitude of about 80' roughly 17 pumping cycles are requiil

and the total time taken is about 80 seconds. There is some evidence that at some

the rules for pumping became understood and transmitted to other local cathed

there are records of the cathedrals at Orense and Tuy (respectively 100 km SE ar

S of Santiago), but there are no records of the large gold censer at o1d St Petet'a

Rome ever having been set in motion.

The motion of O Botafumeiro is said to be an impressive sight. It clearly i

significant strains on the supports, with the result that several accidents have occuned.:

When pumping, the highest tensions in the ropes occur at the top and bottom ol'

the swing, so it is here that the rope is most likely to break; the recorded accidentr-'

support this view. In1,622 the rope broke and the censer fell vertically. just misstngtle.

men pulling at the rope, suggesting that the break occurred near the highest poinl 1n ::

1499 the chains attached to the censer broke and it landed at the side of the transepl '

crushing the door about 30 m from the centre of the swing; this could happen otil 
,

the amplitude of the motion was large and the break occurred near 1[e !e{1ei1 ot txc I

swlng. . .,r.;
The dynamics of O Botafumeiro is complicated; in particular the amplitude of th9'i

motion is too large for the linear approximation to be made, the rope is fr;a.W 1]..
mass needs to be taken into account, partly because at the highest point oI tne swpa 

l

it is far from straight, and air resistance needs to be included. Nevertheless thts
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has bee, studied, Sanmartin (1984), and the theoretical motion agrees well with its

urtrul 
otottot"t'

n 1.4 One-dintensional linear s.t'slenrs

'r|,,,-ora.t linear systerns are relatively easy to undelstand and serve as a useful stepping

stone 
to nrore complicated systems. The most general homogeneous, first-order system

has the forn 
+: a(r).x, (12.8)
dt

*,here a(r) is a l-periodic function of time, a(t + T): rr(t) for all t. This equation can

be solved bY direct integration,

(12.e)

but it is more helpful to use methods that can easily be generalised to higher-

dinensional systems that cannot be integrated.

The linearity of the equations and the periodicity of the coeffrcient impose constraints

uponthe possible types of solution:if r(r) is a solution then the function y(r) : r(r*T)
is also a solution because

4! : !,t,+ r) : ',,:|'lJ,) a(t + r)x(t + r)dt dr dtt+ll
olr )yt r t.

Hence x(f * T) and -x(f) satisly the same equation. They are, however, not necessarily

the same function, but because the differential equation is first-order and linear there

is only one linearly independent solution, so we must have

r(r+T):cx(f),

where c is a constant, independent of r.

Exercise 12.13
Show that for any integer n.

x(to+nT) :c"x(lo)

(12.10)

(12.rr)

and use equation 12.9 to deduce that

c: exp ( [' 0,"r,,\ .-\Jo )
What property of a(t) is required for x(t) to be periodic?

r'quatton 12.11 has a particularly simple interpretation. lf c > 1 then c" grows expo-
nentially with increasing n, so the solution ,x(r) also increases exponentially. But if c < 1

thencr --+ 0 as n -' co, so r(r) -- 0 as t -+ co. In the special case c : 1, x(t+ T) : x(r),
tot all t, and the solution is periodic: this occurs only when the mean value of a(r) is
zer0.


