Condition for amplification in parametric resonance

(Dated: October 17, 2012)

Abstract

Here are some details that are missing from Landau \& Lifshitz pp. 82-83. These details provide answers to questions raised today in class.

The equation of motion we want to solve is

$$
\begin{equation*}
d^{2} x(t) / d t^{2}+\omega_{0}^{2}[1+h \cos (2 r)] x(t)=0 \tag{1}
\end{equation*}
$$

where h is a small parameter measuring the strength of the parametric driving, and $r=\left(\omega_{0}+\epsilon / 2\right) t$ gives a driving frequency within ϵ of twice the resonant frequency $2 \omega_{0}$ of the oscillator. So the other small parameter is $\epsilon / 2 \omega_{0}$.

The $2 \omega_{0}$ value of the driving frequency will excite a certain amount of third harmonic response, varying as $c \cos (3 r)+d \sin (3 r)$. We therefore expect solutions of the type

$$
\begin{array}{r}
x(t)=a(t) \cos (r)+b(t) \sin (r)+c(t) \cos (3 r) \\
+d(t) \sin (3 r)+\cdots \tag{2}
\end{array}
$$

where probably the coefficients c, d will be small compared with a, b. We also expect the coefficients $a(t), \cdots$ to vary slowly in time. In other words, the ratio $(d a / d t) / a$ is small, of order ϵ / ω_{0} or h. The second time derivative, $\left(d^{2} a / d t^{2}\right) / a$, should be of second order in smallness, and is therefore neglected. Our aim is to find out whether $a(t)$ or $b(t)$ could be growing in time as $\exp (s t)$ with positive s. This behavior characterizes parametric resonance. Therefore, we look for solutions $a(t)=a \exp (s t), b(t)=b \exp (s t), \cdots$. Slow variation of $a(t)$ means $|s| / \omega_{0}$ is also a small parameter. A pure imaginary exponent s would indicate a shifted frequency, and a complex s would have a real part indicating amplification.

To first order in small parameters, we have

$$
\begin{align*}
d^{2} x / d t^{2} & +\omega_{0}^{2} x=[(-\epsilon a+2 s b) \cos (r)+(-\epsilon b-2 s a) \sin (r) \\
& \left.-\left(\left(8 \omega_{0}-9 \epsilon\right) c+6 s d\right) \cos (3 r)+\cdots\right] \omega_{0} e^{s t} \tag{3}
\end{align*}
$$

In the driving terms, we use trigonometric identities $\cos (m r) \cos (n r)=[\cos (m+n) r+\cos (m-n) r] / 2$ and $\cos (m r) \sin (n r)=[\sin (m+n) r-\sin (m-n) r] / 2$ to write

$$
\begin{align*}
\omega_{0}^{2} h \cos (2 r) x & =[(a+c) \cos (r)-(b+d) \sin (r)+a \cos (3 r) \\
& +\cdots] \times \omega_{0}^{2} h e^{s t} / 2 \tag{4}
\end{align*}
$$

Adding Eqs.(3) and Eq.(4), and setting to zero the coefficient of $\cos (r), \sin (r), \cos (3 r), \cdots$, we get the linear equation system

$$
\begin{gather*}
\left(-\epsilon+\omega_{0} h / 2\right) a+2 s b+\left(\omega_{0} h / 2\right) c=0 \tag{5}\\
2 s a+\left(\epsilon+\omega_{0} h / 2\right) b+\left(\omega_{0} h / 2\right) d=0 \tag{6}\\
\left(\omega_{0} h / 2\right) a-\left(8 \omega_{0}-9 \epsilon\right) c-6 s d=0 \tag{7}
\end{gather*}
$$

Eq.(7) (zeroing the coefficient of $\cos (3 r)$) tells us that the amplitude $c=(h / 16) a$ of the third harmonic cosine response is indeed a small number. The same is true for d, the amplitude of the third harmonic sine response. Therefore in Eqs.(5) and (6), the terms involving c and d should be neglected to lowest order. Thus we have the system of equations

$$
\left(\begin{array}{lr}
-\epsilon+\omega_{0} h / 2 & 2 s \tag{8}\\
2 s & \epsilon+\omega_{0} h / 2
\end{array}\right)\binom{a}{b}=0 .
$$

These equations have solutions if $s= \pm \sqrt{\left(\omega_{0} h / 2\right)^{2}-\epsilon^{2}}$. There is amplification (s real and positive) only if the driving frequency ω agrees with twice the resonance frequency $2 \omega_{0}$ within $|\Delta \omega|=|\epsilon|<\omega_{0} h / 2$. Our assumptions are confirmed that $|\epsilon| / \omega_{0}$ and $|s| / \omega_{0}$ are both small when h is small, in the regime of amplification.

How do we know that the solution involves amplification $(s>0)$ rather than damping $(s<0)$? The initial conditions always (except for one isolated point) imply that an amplifying term exists. The coefficients a, b must satisfy Eq.(8). This fixes the ratio $(b / a)_{ \pm}=$ $\pm\left(\epsilon-\omega_{0} h / 2\right) / 2|s|$. The general solution is a sum of amplifying and decaying parts,

$$
\begin{align*}
x(t) & =A\left(\cos (r)+(b / a)_{+} \sin (r)\right) e^{|s| t} \\
& +B\left(\cos (r)+(b / a)_{-} \sin (r)\right) e^{-|s| t} \tag{9}
\end{align*}
$$

The coefficients A, B are set by initial conditions.

