
Condition for amplification in parametric resonance
(Dated: October 17, 2012)

Here are some details that are missing from Landau & Lifshitz pp. 82-83. These details provide
answers to questions raised today in class.

The equation of motion we want to solve is

d2x(t)/dt2 + ω2
0 [1 + h cos(2r)]x(t) = 0 (1)

where h is a small parameter measuring the strength of
the parametric driving, and r = (ω0+ε/2)t gives a driving
frequency within ε of twice the resonant frequency 2ω0

of the oscillator. So the other small parameter is ε/2ω0.
The 2ω0 value of the driving frequency will excite a

certain amount of third harmonic response, varying as
c cos(3r)+d sin(3r). We therefore expect solutions of the
type

x(t) = a(t) cos(r) + b(t) sin(r) + c(t) cos(3r)

+d(t) sin(3r) + · · · (2)

where probably the coefficients c, d will be small com-
pared with a, b. We also expect the coefficients a(t), · · ·
to vary slowly in time. In other words, the ratio
(da/dt)/a is small, of order ε/ω0 or h. The second
time derivative, (d2a/dt2)/a, should be of second order
in smallness, and is therefore neglected. Our aim is to
find out whether a(t) or b(t) could be growing in time
as exp(st) with positive s. This behavior characterizes
parametric resonance. Therefore, we look for solutions
a(t) = a exp(st), b(t) = b exp(st), · · ·. Slow variation of
a(t) means |s|/ω0 is also a small parameter. A pure imag-
inary exponent s would indicate a shifted frequency, and
a complex s would have a real part indicating amplifica-
tion.

To first order in small parameters, we have

d2x/dt2 + ω2
0x = [(−εa+ 2sb) cos(r) + (−εb− 2sa) sin(r)

− ((8ω0 − 9ε)c+ 6sd) cos(3r) + · · ·]ω0e
st (3)

In the driving terms, we use trigonometric identities
cos(mr) cos(nr) = [cos(m + n)r + cos(m − n)r]/2 and
cos(mr) sin(nr) = [sin(m+n)r− sin(m−n)r]/2 to write

ω2
0h cos(2r)x = [(a+ c) cos(r)− (b+ d) sin(r) + a cos(3r)

+ · · ·]× ω2
0he

st/2 (4)

Adding Eqs.(3) and Eq.(4), and setting to zero the co-
efficient of cos(r), sin(r), cos(3r), · · ·, we get the linear
equation system

(−ε+ ω0h/2)a+ 2sb+ (ω0h/2)c = 0 (5)

2sa+ (ε+ ω0h/2)b+ (ω0h/2)d = 0 (6)

(ω0h/2)a− (8ω0 − 9ε)c− 6sd = 0 (7)
Eq.(7) (zeroing the coefficient of cos(3r)) tells us that
the amplitude c = (h/16)a of the third harmonic cosine
response is indeed a small number. The same is true
for d, the amplitude of the third harmonic sine response.
Therefore in Eqs.(5) and (6), the terms involving c and
d should be neglected to lowest order. Thus we have the
system of equations(

−ε+ ω0h/2 2s
2s ε+ ω0h/2

)(
a
b

)
= 0. (8)

These equations have solutions if s = ±
√

(ω0h/2)2 − ε2.
There is amplification (s real and positive) only if the
driving frequency ω agrees with twice the resonance fre-
quency 2ω0 within |∆ω| = |ε| < ω0h/2. Our assumptions
are confirmed that |ε|/ω0 and |s|/ω0 are both small when
h is small, in the regime of amplification.

How do we know that the solution involves amplifi-
cation (s > 0) rather than damping (s < 0)? The
initial conditions always (except for one isolated point)
imply that an amplifying term exists. The coefficients
a, b must satisfy Eq.(8). This fixes the ratio (b/a)± =
±(ε− ω0h/2)/2|s|. The general solution is a sum of am-
plifying and decaying parts,

x(t) = A(cos(r) + (b/a)+ sin(r))e|s|t

+ B(cos(r) + (b/a)− sin(r))e−|s|t. (9)

The coefficients A,B are set by initial conditions.


