
Free Rotation of a symmetric top
(Dated: October 27, 2012)

The behavior is derived both by geometric and by algebraic arguments.

FIG. 1. This is figure 46, p107 from Landau and Lifshitz.

I. INTRODUCTION

The symmetric top has inertia I3 around a symmetry
axis, and I1 around the two perpendicular principle axes
of rotation. In the body frame, the direction of the sym-
metry axis is x̂3. The directions of the other two axes,
x̂1 and x̂2 can be chosen freely around the x̂3 axis. Total

angular momentum ~L is constant. Choose the Ẑ axis of
the lab (or fixed, or inertial, or space) frame to align with
~L. The system is shown in the figure, taken from Landau
and Lifshitz, with some symbols added.

This picture shows the system in the lab frame, where
Euler angle θ gives the tilt, and Euler angle φ, at the
instant shown, is zero. There is no attempt to show the
angle ψ – no special point on the body has been chosen.
The body is symmetric around its axis x̂3. Notice that

the angular velocity ~Ω is shown, deviating from the angu-

lar momentum ~L by an angle labelled as χ. The vectors
Ẑ and x̂3 (z-axes of the two frames), deviate from each

other by θ. ~Ω is time-dependent in both lab and rotat-
ing frames. Can we say anything simple about this time
dependence?

The important thing about this diagram is that the

angular velocity ~Ω has different decompositions, each
uniquely determined. In the body frame (also called the

rotating frame) it is ~Ω = Ω1x̂1 + Ω2x̂2 + Ω3x̂3. In the

lab frame it is ~Ω = ΩXX̂ + ΩY Ŷ + ΩZẐ. In Eulerian

angles, it is ~Ω = ~̇φ+ ~̇ψ+ ~̇θ. By definition of the Euler an-

gles, ~̇φ lies along Ẑ, ~̇ψ along x̂3, and ~̇θ along the “line of
nodes,” Ẑ×x̂3. We can choose coordinates so that at time

t = 0, the angular momentum ~L = L1x̂1 +L3x̂3 is in the
(x̂1, x̂3)-plane of the rotating system. Since L1 = I1Ω1,
etc., we see that Ω2 = 0, and thus that the angular ve-

locity ~Ω = Ω1x̂1+Ω3x̂3 has also no x̂2 component, and is

coplanar with ~L ‖ Ẑ and x̂3. Not only is Ω2 = 0, but also

in the lab frame, we choose X̂ and Ŷ so that ΩY = 0. In

the Eulerian system, ~̇θ = 0 because otherwise it would
have a non-zero component ΩY along Ŷ and Ω2 along x̂2.

As time evolves, the inertia axes move relative to ~L and
~Ω, and the components Ω2 and ΩY become non-zero. But
this is not true for the θ-component. The symmetry axis

x̂3 of the top evolves in a cone around ~L as shown in the
figure. To see this, consider a point ~r that is fixed in the
body, and that happens to be on the x̂3 axis. The fun-
damental connection is that the velocity in the inertial

frame ~v = d~r/dt of such a point is ~Ω×~r, showing that the

velocity is perpendicular to both ~Ω and x̂3. As the two

vectors ~Ω and x̂3 evolve in time in the inertial frame, ~v
continues to be perpendicular to both, and has constant

magnitude. This shows that the component ~̇θ of angular
velocity stays always zero. In general (for an unsymmet-

ric top, or a symmetric top under gravitational torque) ~̇θ
would not be zero. If at the instant (t = 0) of the figure,

gravity parallel to Ẑ were turned on, gravitational torque

would give ~L a component in the direction of the line of

nodes. The top would begin to nutate, and ~̇θ would be
suddenly non-zero. But with no external torque, there is

nothing to increase ~̇θ from zero.
So far we found one simple statement about the time-

dependence of the free motion of the symmetric top: It
moves with the tilt angle θ constant (θ̇ = 0.) There
are closely related statements that also follow. The an-
gular momentum component Ω3 of the rotation around
the symmetry axis is constant, and the magnitude of the

part of ~Ω perpendicular to x̂3 is constant. Equivalently,
Ω2

2 + Ω2
3 = Ω2

⊥ is constant. And both φ̇ and ψ̇ are con-
stants. These are all evidently true once we accept that
all the vectors shown in the figure simply rotate (in the

inertial frame) around the fixed vector ~L.

II. EQUATIONS OF MOTION

The starting point is the equation for kinetic energy.,
T = 1

2

∑
αβ IαβΩαΩβ . This equation is awkward to use

in the lab frame, where the angular momentum com-
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ponents are (ΩX ,ΩY ,ΩZ), because the components of
the tensor, like IXY , vary in time as the top rotates,
and need to be expressed in terms of the simpler compo-
nents of I in the body frame. The kinetic energy in the
body frame is (I1Ω̇2

1 + I2Ω̇2
2 + I3Ω̇2

3)/2. Unfortunately,
we cannot use the simple Lagrange-type equation of mo-
tion d(∂L/∂Ω̇i)/dt = ∂L/∂Ωi = 0 because the angles
Ω1,Ω2,Ω3 are not proper coordinates. There are two op-
tions.

(A) Re-write Ω̇i in terms of φ̇, θ̇, ψ̇, φ, θ, ψ. Then equa-

tions like d(∂L/∂φ̇i)/dt = ∂L/∂φ are well-defined, but
not especially simple. The Lagrangian is then, for the
symmetric top (Landau & Lifshitz, eq. 35.2)

L = T =
1

2
I1(φ̇2 sin2 θ + θ̇2) +

1

2
I3(φ̇ cos θ + ψ̇)2 (1)

From this one can show that φ̇, θ̇, and ψ̇ are all con-
stant, and by an argument simplified by judicious choice
of initial conditions, θ̇ = 0 (Landau & Lifshitz, eq. 35.4.)

(B) Use the inertial-frame Newtonian version d~L/dt =
~τ = 0 (where ~τ is the torque, zero for free rotation), and

transform to the body frame where d~L/dt = −~Ω× ~L. In
this frame we can use Li = IiΩi. This procedure yield the
Euler equations (Landau & Lifshitz, eq. 36.4, specialized
to the symmetric case I1 = I2.)

dΩ1/dt = −[Ω3(I1 − I3)/I1]Ω2

dΩ2/dt = +[Ω3(I1 − I3)/I1]Ω1

dΩ3/dt = 0 (2)

From the third of these we have that Ω3 is constant,
as deduced above. Because of this, the factor in square
brackets in the first two equations is a constant frequency.
Solving the equations is easy, and yields a uniform rota-

tion of the perpendicular components of ~Ω around the
axis x̂3 of the top, as seen in the body frame. This tells
us that θ̇=0, or the tilt angle θ is a constant. All this was
also deduced above from the diagram. The frequency of
this rotation is in fact just ψ̇ = [Ω3(I1 − I3)/I1].

Interpreting this requires thought. If you are in the
body (rotating) frame, the body is not rotating, but the
inertial frame (the stars if you are standing in place on

earth) are rotating. If ψ̇ is small compared with Ω3 (as is
the case on earth where the factor (I1− I3)/I1 ≈ 0.0033)
then what you see is the rotation of the stars around the
x̂3 axis of symmetry, plus a much slower precession of the
point in the sky (Polaris for now) we rotate around. The
axis of rotation, as located this way in the sky, evolves
in a circle at angular velocity ψ̇. Earth’s precession from
this effect is quite small, and perturbed by elasticity. A
much slower precession (period 26,000 years) with larger
amplitude, is caused by torques from the sun and the
moon.

From these equations we learned one thing that wasn’t
yet learned from the diagram, namely that ψ̇ = Ω3(1 −
I3/I1). This is in fact, an interesting (and surprising!)

result, so we will next learn how to deduce it from the
diagram. Why is it surprising? Because the precession
frequency does not depend on the angle of inclination (χ,

for the inclination of ~Ω relative to the symmetry axis x̂3,
or θ for the inclination of the angular momentum to the
symmetry axis.) It is a harmonic-oscillator type motion,
where the frequency is independent of amplitude.

III. PROPERTIES OF ~̇φ AND ~̇ψ DEDUCED
FROM THE DIAGRAM

We have θ̇ = 0 and ~Ω = ~̇φ + ~̇ψ. We want to find

formulas for the components φ̇ and ψ̇ of ~Ω on the non-
orthogonal axes Ẑ and x̂3. First, project onto axes per-
pendicular to x̂3 (this is x̂1; the projection is Ω1) and

perpendicular to Ẑ (this is X̂; the projection is ΩX).
These projections are both shown on the diagram. Then
the desired component times sin θ is just this projection,
so we have

φ̇ sin θ = Ω1

ψ̇ sin θ = ΩX (3)

Landau and Lifshitz simplify the first of these by noticing
that Ω1 = L1/I1 = L sin θ/I1, which gives φ̇ = M/I1.
They call this frequency Ωpr, because it is the rate of
precession of the symmetry axis of the top, seen in the
lab frame.

To simplify the second equation, notice that ΩX =
Ω sinχ, so ψ̇ = Ω sinχ/ sin θ. Next, write sinχ =
sin[θ − (θ − χ)], and notice that θ − χ is the angle be-

tween ~Ω and x̂3. Therefore sin(θ − χ) = Ω1/Ω and

cos(θ−χ) = Ω3/Ω. This allows us to write ψ̇ = Ω[Ω3/Ω−
(Ω1/Ω)(cos θ/ sin θ)]. Finally, cos θ/ sin θ = L3/L1 =

I3Ω3/I1Ω1. This gives us the result ψ̇ = Ω3(1 − I3/I1).
The surprising result from the Euler equations is thus
also already contained in the diagram.

To me, the very counter-intuitive part is the contrast
between the precession φ̇ seen in the lab frame, and the
precession ψ̇ seen in the body frame. This contrast is
very large for an object like earth with I3 ≈ I1. The lab
frame say the object rotates around its symmetry axis at
the slow rate ψ̇, whereas the body frame says the rate of
rotation around the symmetry axis, perceived by watch-
ing the sky, is Ω3. According to the decomposition of
the Euler angular velocities, Ω3 = ψ̇+ φ̇ cos θ (see eq.(1),

very different from ψ̇, and dominated by the other part,
φ̇ cos θ. The confusing thing is, why does the observer
on the sun interpret so much of this (φ̇) as precession of
the body axis, and so little as rotation around the body
axis (ψ̇)? Since the angle θ − χ for the earth is very
small, the two types of rotation must be very hard to
distinguish in the lab frame, which makes it a little less
counter-intuitive.


