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We could speculate on whether the converse of Noether’s Theorem holds. For example,
the Laplace-Runge-ILenz vector in the Kepler problem* is a conserved quantity. Does
this imply a continuous symmetry heretofore unknown to us? It does: It is called the
“O(4) symmetry.” Like the Lenz vector example, does the existence of conservation laws
necessarily imply hidden symmetries of the Lagrangian?

5.3 HAMILTONIAN DYNAMICS

Up to now, we have used a phase space in which we track the development of qe(t)
and ¢ (r) in time. Tt will be convenient to use a more general definition of phase space, one
that contains the coordinates g,(t) and the canonically conjugate momenta p;(t), which
are defined for the general case of N degrees of freedom by:

D= (5.15)

Thus g, and p will become the basic dynamical variables instead of g; and gy. According
to the definition (5.15), py is a function of g, ¢z, which are themselves functions of the
time via the equations of motion.

The Lagrangian L(q, ¢,t) is replaced by the Hamiltonian H(q, p, ). The Fuler—
Lagrange equations which determine the motion of the system are replaced by Hamilton’s
equations. Not only does this procedure lead to symmetric equations involving the dynam-
ical variables ¢; and p;, but a whole new approach to classical mechanics is introduced,
one that leads to the most powerful and sophisticated tools of theoretical physics. The
concept of canonical momentum is the key concept in Hamilton’s theory. You must be
warned that momentum can lose its familiar definition: p = mv. It will turn out that this
is still true in many simple cases, but it is often not true when generalized coordinates are
used for convenience in solving a problem.

Although we defined canonical momentum in Chapter 1, let us begin again from the
beginning. Our goal is to find a quantity p(q, ¢) that is dynamically independent of the
generalized coordinate g. We will explain more precisely what is meant by “dynamical
independence” later. First we have to do some preliminary mathematical spadework to
understand how to eliminate ¢ and replace it with the canonical momentum p for Hamilton’s
theory.

5.4 THE LEGENDRE TRANSFORMATION

We begin with a purely mathematical exercise. The Legendre transformation is
a recipe for starting with a function of a variable and generating a new function of a new

* The Laplace—Runge—Lenz vector is defined in Problem 2 at the end of this chapter.
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variable. If the transformation is repeated, it restores the old function of the old variable.
Legendre transformations are used in mathematical treatments of partial differential equa-
tions and also are used very extensively in thermodynamics to change from one set of
variables to another. To focus on the mathematical content, we will use a notation that
does not specifically refer to mechanics. Consider the independent mathematical variables:
apassive® variable x and an active variable y. Assume a function A(x, y) of these variables
is known explicitly. Now introduce a third variable ¢ and define the function of these three
initially independent variables B(x, y, z) = yz — A(x, y). (T he minus sign is not essential
but will be convenient.) Small chan'géys‘ dx, dy,dz in x, y, z cause a change dB in the
function B:

A dA
dB =zdy +ydz — —| dx — . dy. (5.16)
y y X
Regrouping the terms in Equation (5.16) we get
dA A
dB = (z —— ) dy +ydz — —| dx. (5.17)
ay |, ax |,

So far, 7 has been an arbitrary independent variable. We now define z to be a function of
x and y by the equation

dA
g=2z(x,y) = —

3y (5.18)

X

The coefficient of the term proportional to dy in Equation (5.17) vanishes. The other
partial derivatives of B, which is now only a function of x, z can be computed from
Equation (5.17):

ab

=

aB

0A
07

Bx

=Y, (5.19)

X

z ¥y

To compute B explicitly, we have to invert the relation for z (5.18), solving for y =
y(x, z) and then substitute into B(x, y(x, 2), 2). With the Legendre transformation, y(x, z)
is also obtained from the partial derivative y = y(x,z) = %gix. This means that, given
B(x, z), the transformation can be inverted. For a Legendre transformation, it is possible

to work either with B(x, z) or with A(x, y) to find the “passive” partial derivative, since
3 ;
2, =~ 4,

It is often said that the advantage of the Legendre transformation is that it creates a

function of x, z alone. This is true. But this could also be done by substituting an arbitrary
functional relationship y = y(x, z) into B(x, y(x, z), z) = B(x, z). However, all infor-
mation about y(x, z) may be lost after the substitution, since the simple relations between

* The meaning of “passive” and “active” will become clear from the context.
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FIGURE 5.2

Graphical representation of the Legendre
transformation showing the construction
of z and B(z) from y and A(y). At the
maximum separation, %(zy —A) = 0, so

_ dA
Z = 237|y:y*.

partial derivatives ((5.18), (5.19)) would not be valid. A concrete example may help to
make this clear.

= Example

This is really an exercise. Define A(x, y) = (1 + x?)y?. Prove that B(x, z) = 171%—23
for the Legendre transformation. Show that you can invert the transformation using
the partial derivative relations (5.19) and an “inverse” Legendre transformation to find
y(x, z) and A(x, y) from B(x, z). Now try the arbitrary substitution y = z and show
that the form of y(x, z) cannot be recovered from knowing B(x, z) = yz — A(x, y) =
—x272.

Two different, but completely equivalent, geometric interpretations of the Legendre
transformation may help the reader to visualize what the transformation means. In the
first way, the distance between a line of variable slope z: fi(y) = zy and a function
f>(y) = A(y) is maximized to find y*(z). (We are suppressing the passive variable x.)
This shows that only convex functions A(y) can be used for the Legendre transformation,
since otherwise the maximum might not exist. To find the maximum distance you must
solve the equation ;J‘Ly (zy — A(y)) = 0, which is the same equation as (5.18). Figure 5.2
shows this construction. The maximum distance is the function 5(z).

A second construction, Figure 5.3, shows the dual nature of the Legendre transforma-
tion. If z is the slope of the tangent to the curve A(y) then B(z) is the intercept of the line
tangent to A at the point y*. The same is true if instead we start from z and the convex
function B(z) and in the same way build y and A(y).

QUESTION 5: Convex versus Concave Why does A(y) have to be a convex function?
What happens if it is not? (Try A(y) = y, for example.) Is B(z) convex?
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f=B(2)
A B
Y VA
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yk 7%
1 2
FIGURE 5.3

Dual nature of the Legendre transformation. 1) Construction of z and B(z) from y

and A(y). Sinédjthe slope of A(y)aty = y*is equal to 2(y™), then 7 = ﬂl%“rﬂi)
2) Constructi§n of y and A(y) from z and B(z). Since the slope of B(z) at z == z*

is equal to y(z*), then y == =252

Why Transform?

In mechanics, start with the Lagrangian L(q, ¢) (the possibility of explicit time
dependence in the Lagrangian will be temporarily set aside, just to simplify the notation).
The active variable is ¢, and the passive variable g. By making the Legendre transformation
as described above, we pass to the variable p and the Hamiltonian H{(g, p):

oL

aq constant ¢

The transformation is invertible as noted above.

Since the Legendre transformation can be made equally well in either direction, why do
we prefer the variable p and the Hamiltonian H (g, p) to the choice of ¢ and L(g, ¢)? The
key feature of using the canonical momentum p, which is the tangent to the Lagrangian,
instead of ¢, is that Hamilton’s Principle holds for independent variations of ¢ and p.
The arbitrary variations §p and 8¢ are truly independent at each point in time, unlike the
variations 8¢ and 8¢. To see this, recall Hamilton’s Principle

8 S(action) == f(SL dt = 0. 5.21H)
Calculate 8L in terms of the variations of ¢ and p from (5.20):

SL = ¢8p + pdg — SH. (5.22)
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The chainrule for partial derivatives tells us (remember that §p, 8¢ are arbitrary infinitesimal
functions of the time) that

oH oH
SH = —68¢ + —p. (5.23)
dq ap
‘Inserting Equation (5.23) into Equation (5.22) and collecting together the coefficients of
8¢ and §p, we have

oH oH d
51, = (q _ T) 5p - (p i __»—> sq+ L (psg). (5.24)
p g dt

When Equation (5.24) is integrated with respect to time to compute the variation in the ac-
tion, the total time derivative on the right-hand side of the equation will contribute nothing
if g = 0 at the end points. This has always been a requirement of Hamilton’s Principle.
Thus (5.24) indicates that Hamilton’s Principle will only work for independent arbitrary
variations of p and ¢ if the coefficients of 8p, 8¢ vanish. (The dual transformation already
shows us that the coefficient of §p vanishes automatically.)

To prove that the coefficients do vanish, start again from the basic defining Equat-
ion (5.20) and vary all the variables, p, ¢, ¢ (this does not imply that they are independent),
to obtain

aL

dH = ¢dp + pdg — 5

dq. (5.25)

q

dq — —
i 9q

The coefficient of d¢ vanishes due to the definition of p. Varying ¢ for constant p and p
for constant ¢ yields the equations

OH
ap

OH
dq

oL d oL
_ _4 --_‘ - . (5.26)

§= - .
» dq |, dt 9q |,

q

In the last step, on the right, we have made use of the passive nature of ¢ in the Legendre
transformation and the Fuler-Lagrange equations of motion.

We have not only derived Hamilton’s canonical equations of motion but have proved
at the same time that independent infinitesimal variations in 8¢ and 8p from the physical
path in phase space do not change the action, Equation (5.21). We can summarize our
result in a single equation representing any change in H due to changes in the arguments
of the function H(g, p):

df = gdp — pdq. (5.27)

The symmetry between g and p is evident here. It is a consequence of the Legendre
transformation combined with the Euler-Lagrange equation.

Before, in Chapter 2, we plotted ¢(¢) on the Y axis and time 7 on the X axis, making
small variations from the actual graph of the physical coordinate versus time, and proving
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FIGURE 5.4

Two views of the dynamics of a falling body. In the Lagrange case,
the height z versus the time ¢ is plotted. In the Hamilton case, momen-
tum p versus height z is@otted. Dashed curves are variations from the
physical paths. J

that the equations of motion follow from making the action integral an extremum on the
physical path. Now we are plotting the phase trajectory of the moving point g(t), p(r)
in phase space as shown in Figure 5.4. Varying this trajectory by arbitrary infinitesimal
variations in ¢ and p also leaves the action unchanged. Since we take Hamilton’s Principle
to be the basic law of mechanics, the trajectory in phase space with this extremum property
is the solution for the motion. In this view, the time appears as a parameter that we vary
in order to trace out the trajectory. There are rewards for this shift in viewpoint, which we
will discuss below.

5.5 HAMILTON’S EQUATIONS OF MOTION

For N degrees of freedom, the 2N -dimensional phase space becomes {gy, P} and
the Hamiltonian H is

y ,
H=Y" puax—L, (5.28)
k=1

H = I{(Qth--wQN, P1, P2, "',]7N1t)'

To consider the possibility that the time might appear explicitly in the Hamiltonian, add a
term for this:

N S OH
dH = ;Z;[:qk dpy ~ /}; Prdqy + — - d. (5.29)

Since the time is also a passive variable in the Legendre transformation we know that

oH

7 (5.30)

Glses Plyeee
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The total time derivative of H can be computed:

dH _ o OH 0L 530
PR o A VR Vi -

=0

If there is no explicit time dependence in L, H will be a constant of the motion. If the
kinetic energy is a quadratic form in the g;s, A is also the total energy £ =T + V.
The final result is

. 9H 9H dH  OL
Gk = —— P = (5.32)
k

Hamilton’s equations of motion

These are the fundamental equations of Hamiltonian dynamics.

In Lagrangian dynamics N second-order differential equations must be solved. In
Hamiltonian dynamics there are 2N first-order equations instead. This often makes very
little difference in the difficulty of finding explicit solutions. The fact that ¢ and p are treated
(almost) symmetrically allows for the discovery of some important theorems: Liouville’s
Theorem, which we will discuss later in this chapter, and the Poincaré Recurrence Theorem,
which is discussed in Appendix B. It also makes possible the development of sophisticated
analytical tools such as canonical transformations, as we shall see in Chapter 6.

We can get (g, p) at time ¢ + dt from the knowledge of (¢, p) at time ¢ by using
Hamilton’s equations. Thus a step by step time integration can be performed. This is what
is actually done when the equations of motion are numerically integrated on the computer.

We now summarize what you must do in order to start from a Lagrangian and convert
to the use of Hamilton’s dynamics:

1. Define the momentum canonically conjugate to ¢ by the “tangent” to the LLagrangian:

aL

Pe = (5.33)

aqk constant qk.
Do this for each degree of freedom, holding the coordinates and velocities for the
other degrees of freedom constant.

2. Define the Hamiltonian H as in Equation (5.28) above. This is now a mixed function
of all the ¢y, ¢ and pys. This is still not the final form, since the Hamiltonian must
be expressed as a function only of the g,s and pys.

3. Invert the function(s) you obtained in Equation (5.33) to get ¢i(g1,q2, ..., P1s
D2y e o)

4. Eliminate the generalized velocities in the temporary form of the Hamiltonian from
Equation (5.28). You should now have the Hamiltonian as a function of the p;s and
gxs only. The time will appear explicitly in the Hamiltonian only if it was explicitly
present (due to time-dependent constraints) in the Lagrangian.

5. Solve the 2N first-order Equations (5.32).






