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The conservation of linear momentum can be similarly considered. The total
electromagnetic force on a charged particle is

F=q(E+§xB) (6.113)

If the sum of all the momenta of all the particles in the volume V is denoted by
P, we can write, from Newton’s second law,

dP,, 1
Lot (pE+—JxB) &y (6.114)
dt v Cc

where we have converted the sum over particles to an integral over charge and
current densities for convenience in manipulation. In the same manner as for

Poynting’s theorem, we use the Maxwell equations to eliminate p and J from
(6.114):

1y, _L( _1@)
p=7-V-E, J=7-(VxB T (6.115)

With (6.115) substituted into (6.114) the integrand becomes

lyp=_L E)+L1BxE_
pE+EJxB—4ﬂ_[E(V E)+chat Bx(VxB)]
Then writing
E_ 5 3B
BXE— at(EXB)+Ex_al

and adding B(V - B)=0 to the square bracket, we obtain
1 1 . CB)— _ __1 3
pE+EJXB—4m— [E(V-E)+B(V:B)-EXx(VXE) Bx(VxB)] -t (ExB)

The rate of change of mechanical momentum (6.114) can now be written

deech

A 1 e
dt +d:L e EXB) d'x

1

Tdm

J [E(V-E)-ExX(VXE)+B(V - B)-Bx(VxB)]d’x (6.116)

We may tentatively identify the volume integral on the left as the total
electromagnetic momentum Py, in the volume V:

1 \
Piwa=—-| (ExB)d’ 117
field 47rc,[v( )d’x (6.117)
The integrand can be interpreted as a density of electromagnetic momentum.
We note that this momentum density is proportional to the energy-flux density
S, with proportionality constant ¢ 2.
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To complete the identification of the volume integral of
-1
8= (EXB) (6.118)

as electromagnetic momentum, and to establish (6.116) as the conservation law
for momentum, we must convert the volume integral on the right into a surface
integral of the normal component of something which can be identified as
momentum flow. Let the Cartesian coordinates be denoted by x., «=1, 2, 3. The

a=1 component of the electric part of the integrand in (6.116) is given explicitly
by

[E(V - E)—EX(VXE)].= E (

dE1+aEz+a_E;) 652 aE) aEl aEg)
axX; 0X2 0X3 axl axz ax1 dx;
1
2

=—(E,)— - (EiE2)+5- (553—81( 24 E,*+ Es?)

This means that we can write the ath component as
[E(V - E)-EX(VXE)L= ¥ -o (E.E;~1E - Ed.;) (6.119)
5 0Xp

and have the form of a divergence of a second rank tensor on the right-hand
side. With the definition of the Maxwell stress tensor T,z as

Tuy=— [E.E;+B.By—4(E - E+B - B)5,] (6.120)
Eq. (6.116) can therefore be written in component form as
d _ KB "
dt (Pmcch+Pﬁeld)a - 25: J‘V axﬂ T«B d X (6.121)
Application of the divergence theorem to the volume integral gives
i (Pmcch+Pﬁcld)a = § Z TaBnB da (6.122)
dt s B

where n is the outward normal to the closed surface S. Evidently, if (6.122)
represents a statement of conservation of momentum, ZTugnp is the ath
B

component of the flow per unit area of momentum across the surface S into the
volume V. In other words, it is the force per unit area transmitted across the
surface S and acting on the combined system of particles and fields inside V.
Equation (6.122) can therefore be used to calculate the forces acting on material
objects in electromagnetic fields by enclosing the objects with a boundary
surface S and adding up the total electromagnetic force according to the
right-hand side of (6.122).

The conservation of angular momentum of the combined system of particles



