
Physics 556 Spring 2007  --   HW # 4  --  Answers and discussion. 
 
Low lying energy levels of 3-d transition metal ions.  This subject is discussed in the text by 
Tinkham, as well as in atomic physics books, such as the classic book by Condon and Shortley.  In 
class, we discussed the case of the Ti3+ ion which has a d1 configuration, with 10 degenerate levels 
labeled by the quantum numbers L=2 and S=1/2.  The L-S “term values” are labeled 2S+1L, so this is 
called 2D.  We also discussed the V3+ ion with d2 configuration.  There are 45 degenerate levels 
before adding the interelectronic Coulomb splitting;  the corresponding L-S terms are 1G, 3F, 1D, 3P, 
and 1S, with 3F being the ground state according to Hund’s rules.  We also discussed the more 
complicated case of Cr3+ with d3 configuration, and 120 ways to occupy the d shell consistent with 
the Pauli principle.  The L-S terms that appear are 2H, 2G, 4F, 2F, 2D (twice!), 4P, and 2P, with 4F 
being the Hund’s rule ground state.  As homework, you worked out the case of Mn3+ with d4 
configuration.  Here is the answer.  The label n x (a,b,c,d,e) means that the (m=2,1,0,-1,-2) orbitals 
are occupied with a, …e = u,d,2, or -, where u means up spin, d means down, 2 means both spin 
state occupied, and – means both spin states empty.  The premultiplier “n x” means that there are n 
inequivalent allowed permutations of u and d which do not change the values of ML or MS or alter 
which m values are filled. 
 

Mn3+ (d4) MS=2 MS=1 MS=0 Rep. Degeneracy 
ML=6   (2,2,-,-,-) 1I 13 
ML=5  (2,u,u,-,-) 2 x (2,u,d,-,-) 3H 33 

 
ML=4  

 
 

(2,u,-,u,-) 
(u,2,u,-,-) 

2 x (2,u,-,d,-) 
2 x (u,2,d,-,-) 

(2,-,2,-,-) 

3G 
1Ga
1Gb

27 
9 
9 

ML=3  
 
 
 

(2,u,-,-,u) 
(2,-,u,u,-) 
(u,2,-,u,-) 
(u,u,2,-,-) 

2 x (2,u,-,-,d) 
2 x (2,-,u,d,-) 
2 x (u,2,-,d,-) 
2 x (u,d,2,-,-) 

3Fa
3Fb
1F 

21 
21 
7 

ML=2  
 
(u,u,u,u,-) 
 
 

 
(2,-,u,-,u) 
(u,2,-,-,u) 

4 x (u,u,u,d,-)

(2,-,-,2,-) 
(-,2,2,-,-) 

2 x (2,-,u,-,d) 
2 x (u,2,-,-,d) 
6 x (u,u,d,d,-)

5D 
3D 
1Da
1Db

25 
15 
5 
5 

ML=1  
 
(u,u,u,-,u) 
 
 

(2,-,-,u,u) 
(u,-,2,u,-) 
(-,2,u,u,-) 
(u,u,-,2,-) 

4 x (u,u,u,-,d)

2 x (2,-,-,u,d) 
2 x (-,2,u,d,-) 
2 x (u,-,2,d,-) 
2 x (u,d,-,d,-) 
6 x (u,u,d,-,d)

3Pa
3Pb

9 
9 
 

ML=0  
 
 
(u,u,-,u,u) 
 
 
 

 
(u,-,2,-,u) 
(-,u,2,u,-) 
(-,2,u,-,u) 
(u,-,u,2,-) 

4 x (u,u,-,u,d)

(2,-,-,-,2) 
(-,2,-,2,-) 

2 x (-,2,u,-,d) 
2 x (u,-,2,-,d) 
2 x (-,u,2,d,-) 
2 x (u,-,d,2,-) 
6 x (u,u,-,d,d)

1Sa
1Sb

1 
1 

 
The full table has 13 rows (ML going from -6 to 6) and 5 columns (MS from -2 to 2).  However, the 
upper left part of the table is sufficient for counting states, and figuring the “L-S terms” shown in 



the next to last column.  In free space, if spin-orbit interactions are omitted, these are the different 
excitations possible for 4 electrons occupying 4 out of 10 states in the d shell.  There are 

ways to construct occupancies that obey the Pauli principle.  The sum of 
the degeneracies (rightmost column) is 210. 

2101234/78910 =⋅⋅⋅⋅⋅⋅

 
Within first-order degenerate perturbation theory, you would calculate the energies of these levels 
by constructing and diagonalizing the 210 x 210 matrix of the 2-body Coulomb part of the 
Hamiltonian,  

SSLL MMMMSSLLSLSL MMSLVMMLS ′′′′ ∂∂∂∂∝′′′′ ,, . 
The non-zero integrals are the diagonal elements, plus off-diagonal elements of some 2 x 2 
submatrices that occur because some of the LS terms (irreducible representations) occur twice.  For 
example, the 3P representation occurs twice, and results in 9 identical 2 x 2 submatrices, diagonal in 
ML and MS, coupling the two different types of 3P states.  The values of the diagonal matrix 
elements can all be expressed as as “Slater F-functions”, which are integrals over the radial d-
functions R2(r), 
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The Slater F0 appears in every diagonal term and just gives an overall Coulomb shift of the d-levels; 
the two parameters F2 and F4 cause the LS term values to split.  The coefficients of these energy 
splittings are complicated fractions arising from integrals over L=2 spherical harmonics.  These 
splittings compare moderately well with experimental splittings, but the exact splittings are further 
shifted because of higher order coupling to other levels that occur when by electrons are promoted 
out of the d shell.  The lowest energy level is the one with maximal S, and, within the possible states 
having this S, with maximal L (Hund’s first two rules.)  The origin of Hund’s rules is in this 
Coulomb level splitting.  Unfortunately, no corresponding rules are known which tell you how to 
order the higher lying LS terms. 
 
Spin orbit splitting is contained in a smaller term in the Hamiltonian  
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It can be shown by symmetry arguments that within an L-S term, the matrix elements of this 
operator are proportional to those of SL

rr
⋅ , and that in turn, this can be simplified to 
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For 3-d impurities like V, Cr, Mn, Fe, etc., these term splittings are small, of order 102 cm-1.  When 
the ions are in a crystal, the non-spherical environment of the crystal causes a larger splitting of the 
L-S term.  The spin part S does not feel the crystal field, but the L value does, and splits into smaller 
dimensional irreducible representations of the point symmetry, with splittings that may be 104 cm-1, 
or 1 eV, or higher.  The fact that L is no longer a good quantum number (although S still is) is 
called “quenching” of orbital angular momentum. 


