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CHAPTER 9 pp. 303 —342

Electron Pairing: How and Why?

Philip B. Allen

9.1. Introduction

As this chapter is being written, a year has elapsed since high T,
superconductors became an accepted reality. The mechanism for the
high 7, is still mystericus. It is not even certain that the
superconducting state is BCS-like. This ripe simation is forcing
theorists to rethink.

It is beyond my ability to summarize fairly all serious
theoretical papers of the last 12 months; instead of trying, my aim
will be to explain in my cwn way as many aspects of the problem as I
can. Alternate views can be found in several review papers [1-3] or
by scanning conference proceedings such as the June 1987 Berkeley
conference [4a] and the March 1988 Interlaken meeting [4b].

This chapter tries to emphasize the basics - Cooper pairing
(Sec. 2), Bose Condensation (Sec. 3), and BCS Theory (Secs. 4,5,6).
Yang's conjecture that off-diagonal long-range order (ODLRO) is the
minimal essence of superconductivity is described in Sec. 7. In
Sccs. 8,9,10 the popular mechanisms which fit into conventional BCS
theory are mentioned. The alternative possibility of superconduc-
tivity arising from something other than a conventional Fermi liquid
is discussed in Scc, 11, where the terms “weak” and “strong” are
intrgduced for conventional and unconventional theories.,  Two
“strong"” theories, bipolarons and resonating valence bonds (RVB),
are the subject of Secs. 12 and 14. 1In Sec. 13 a short explanation
is given of the Mott insulator phase of the Hubbard model in the
large U, half-filled band case. This is intended to motivate and
clarify the notions of RVB theory which arc attracting attention
from many theorists. In Sec. 15 several models are described in
which BCS superconductivity arises via magnetic interactions in a
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doped Mott insulator.

One can roughly distinguish four classes of superconductors,
(1) Ordinary metaliic superconductors, such as Pb, Al, Nb, NbN,
V;Si, NbjSn, etc. These all appear to be based on BCS singlet
pairing, caused by the electron-phonon interaction. T, ranges up to
23 K (so far) [5]. (2) “Organic” superconductors such as
(BEDT-TTF);I3. T, is mostly low, but increasing [6]. (3) “Heavy
Fermion” superconductors. Here T, < 1 K is usual [7]. (4) High T,
copper oxide-based superconductors, with T, up to 125 K and possibly
higher.

The last three categories share some surprising similarities:
(a) the mechanism of superconductivity is not clear; (b) the nature
of the pairing scheme is also not clear - BCS triplet or d-wave has
not been tuled out; (¢) all show a proximity between
superconductivity and antiferromagnetic order.  In addition, the
organics and the CuO superconductors show metal-insulator
transitions (no doubt related to antiferromagnetism). A fifth
category could be added: (5) SHe. This is definitely established
to be a BCS triplet state, with proximity to ferromagnetic spin
ordering, and a low T,, ~10-3 K, driven at least partly by spin
fluctuations.

It is logical to believe two things about the CuO-based
superconductors.  First, their behavior should be closely related to
that of Ba(Pbj.,Bi)03 2 structurally related system showing a
similar  interplay of superconductivity and a metal/insulator
transition [8]. Second, their superconductivity should be closely
related to their antiferromagnetic properties. This would help
explain the high T,, because the magnetic energy scale appears to be
~107 K [9]. It is well understood how antiferromagnetism arises
from strong Coulomb repulsion (Sec. 13) but is as yet a matter of
conjecture and controversy how superconductivity, especially with
high T,, can arise from repulsive interactions. This may require an
unconventional, highly-correlated metallic state (such as RVB)
rather than the normal state of BCS theory which is a Fermi liquid.
A possible phase diagram for Lay.,Sr,CuQy is shown in Fig. 1. It
illustrates the interplay of antiferromagnetism and  supercon-
ductivity.

Interestingly, the two logical beliefs mentioned above are in
apparent conflict. There is no evidence yet for antiferromagnetism
in Ba(Pb;,Bi,)0; and the strong correlations which create its
insulating state may originate more from electron-phonon than from
Coulomb interactions [11]. Therefore it is premature to rule out
anything.
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Before commencing, a few preliminary remarks. The reader who
knows BCS theory can skip to Sec. 8. However, I give in Sec. 4 a
derivation of 7, in BCS theory using perturbation theory to find the
divergence of the pair susceptibility, and this may be worth reading
because it is used later on. I assume the structure of CuGQ
superconductors is familiar (see Chapter 4) and that the electronic
states near &p are located in the square-planar sheets and on the
chains, as is explained in Chapter §.

Finally T want to clarify what I mean by “BCS theory” [12].
Some take this to mean the electron-phonon interaction, which causes
a pairing instability. In this sense the CuQ superconductors are
probably not BCS. However, to others (including myself) the central
core of BCS theory is the pairing instability of the Fermi liquid in
the presence of an attractive interaction, with the source of this
interaction a peripheral aspect. In this sense the new materials
may be BCS-like. If future experiments should confirm this, then
the remaining issue is to identify the source of attraction.
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Fig. 9.1. A possible (T, x) phase diagram for La, ,8r,CuOy, after
Aharony er al. [10]. The solid curves are the Neel () and
superconducting  (T,) temperatures separating antiferromagnetic (AF)
from npon-magnetic insulating (I) and superconducting (SC) from
normal metallic (M) regions. Also shown is a possible spin glass

(5G) phase and the orthorhombic (0) to tetragonal (T) phase boundary
which occurs near x = 0.2,
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9.2. Cooper Pairs

Cooper [13] discovered that if two electrons, in an otherwise
non-interacting gas of electrons, are allowed to interact via an
attractive force, they always bind together, with a binding energy

Eg = 206 . ©.1)

A derivation of this formula will be sketched below; 4 is N(ep)V
where ¥ is the interaction strength and N(ep) is the density of
states at the Fermi energy. Generalizing to the case where all
electrons attract each other, one should expect an instability of
the normal Fermi liquid, and this is the essence of BCS theory. The
cause of the instability is the Pauli principle and the sharpness of
the Fermi surface. At higher temperatures the Fermi surface is

fuzzy over a range kT and the instability goes away when kgT = Ep.

To derive Eq. (9.1), let the wavefunction for the interacting
electron pair be
Xk"R’I e-lk’l’z

wirpr) = ) gke 5.2
k

To satisfy the Pauli principle, we choose g(-k) = g(k) and a singlet
spin arrangement, and we restrict the sum in (9.2) to wave vectors k
outside the occupied Fermi sea, & < g = F#%k?/2m, which is the
meaning of the prime on the sum. Translation symmetry makes the
center of mass momentum Q = k; + k; a constant of the motion, and we
have chosen Q = 0 or k; = - k; = k because this gives the lowest
energy. 5 2

We now operate on W(r;,rz) with the Hamiltonian p;/2m + pa/2m +
V(r;,12) and seek the lowest eigenvalue E which will be written as
2ep - Eg, so that Ep is the binding energy. This gives an equation

[2(er-e5) + Eplg®) = L' [Vl )|gk’) . 9.3)
kl

Here we are assuming that V(k,k’), the Fourier transform of
V(r;,r2), is negative, or attractive.

Now it helps to consider one specific type of attractive
interaction, the Bardeen-Pines [14] form of the phonon-induced
interaction.

2hw le kl 12
Vgplk k') = ] . 9.4
k') = e ) Lhwg)? ©-4
Here ¢ = k - k', w, is a phonon frequency, and Mg  is an
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a canonical transformation to eliminate the electron-phonon
interaction in lowest order. It is not exact, and is replaced in
the more sophisticated Eliashberg [15] version of BCS theory by a
time-dependent interaction. After Fourier transforming time to
frequency the Eliashberg interaction looks like (9.4) with ¢ - &',
replaced by fiw. The interaction (9.4) is attractive if |gp-g’ | is
less thfin hwg. A reasonable caricature of Eq. (9.4), which is
convenient for use in Eq. (9.3), is

Vep(kk') = - V8(kpO - |ep-ep|) 6(ks® - |&' er]) , (9.5

where kg8 = fiwp, and § is the unit step function. Notice that V is
a .positivc number and denotes an attractive interaction. With a
reinterpretation of ¥V and @, Eq. (9.5) might be used for other types
of interactions, such as excitons, plasmons, etc.

Now insert Eq. (9.5) into Eq. (9.3). Then gk) will depend
only on & = ¢, and vanish unless &p < & < &p + kg®. In this
interval, g(g) obeys

eptkp®
(e + Egle@ = V [ de'Neste) 9.6)
EF

This equation has a solution, g(g) = c/[2(e-gp) + Eg], provided Ep
obeys the consistency equation

ep+kp®
1= Vj de’ N(&' Y/[2(' -ep) + Eg] . ©.7)
EF

Cooper’s answer for Ep, Eq. (9.1), follows immediately from (9.7)
upon two further approximations: (1) k@ « gp so that variations of
N(&’) can be neglected and N(g') can be replaced by Nier); (2) Ep «
kp®, as is justified by Eq. (9.1) in the weak coupling limit 4 < 1.
These are reasonable approximations in most metals. A formuls for A4
also emerges from Eqs. (9.4, 9.5), namely

A = N(egp) (2|Myy’ |*hwg) 9.8)

where; the bracket in Eq. (9.8) denotes averaging k and &’ over the
Fermi surface. The same parameter 4 appears in Eliashberg theory
for T,.

It is interesting to examine Eq. (9.7) in a different regime,
namely the very dilute limit where gr > O and electron pairs are

PR 1) P e
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bottom of the band and cannot be replaced by a constant value, Tifc
result depends sensitively on the dimensionality d of the clectronic
system, For the non-interacting electron gas,

N(g) = N(cgleg)elen) @272 9.9

where in d = 1, 2, 3, we have ¢; = 1/2x, ¢z = /4=, and c3 = 1/472,
The energy scale &, is 7i%/2ma?, where @ is a microscopic length
defined by Na? = €, where N = number of atoms and Q = d-dimensional
sample volume. Then, setting ¢x = 0, Eq. (8.7) becomes

g .
1_ j gﬂiﬁff_;_)ﬁ (9.10)
A 0 X+
where the dimensionless variables are x = &lgy, & = Eplle,;, 6 =

kp®le,, and A = ¢ V/2¢,. If we further assume weak binding 6« &,
the binding energies found from Eq. (9.10) are

d = (mA)? (d=1) 9.11a)

s = o d=2) ©.11b)

4
5 = (46aD(1-4,/0)2 (d=3) [provided A>1,=1/267] (9.11c)

In 1d, there is always a bound state with binding sgaling as V2 and
independent of the cutoff energy &. In 24, the.re is also alwgys a
bound state, but for small V, Ep is expane:maaﬁy small, w1.t}? a
scale set by @. In 3;1,_ no binding occurs until ¥ exceeds a critical
= 42, Ve lkgO.

Streng’;'tl:evcresultf ‘%or athg dimension-dependence of ' binding are
essentially the same as the well-known single-particle quantum
results for particles in wells. These results contrast sharply with
Cooper’s tesult (9.1), which is independent of d1men§1on anq
reminiscent of the 24 result (9.11b). Because of tne‘ Patuliv
principle, the electrons in Cooper’s problem explore a section ©
k-space with a density of states analogous to E_.qu 9.9) w_lth d=2.

The role of the sharpness of the Fermi surface is to cause a
logarithmic divergence of the integral in Eq. (9.7) as Ep goes tol
zero. This is what permits a bound state Eg > 0 no matter how smal
V is. Suppose the background Fermi sea had a non-zero tcmperatur::‘
This could be modeled by using in Eq. (9.3) a factor 51 - fler")
instead of a sharp cutoff 6(g;’-gp) in the sum on the right. The
logarithmic divergence in Eq. (9.7) would cut off at kT and there
would be no binding for kpT greater than the zeto tex'nperafu’rc
binding energy. For the same reason the superconducting instability
onex awav ag T increases.
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As a final note, one can imagine solutions of Eq. (9.3) with
other symmetries; for example. a triplet state with g-k)y = -gk).
For an interaction like Eq. (9.4) one expects to find Ep largest for
the most symmetric state, namely the singlet. Other bound states of
smaller Ep are irrelevant to superconductivity. For special kinds
of potentials V&), a triplet state (or any other state of
different symmetry) might become the most strongly bound, leading to
a more exotic BCS-like state.  The superfluid phase of JHe at
millikelvin temperatures is the only proven example, having triplet
spin pairing and # = 1 orbital symmetry. The £ = 0 channel
presumably has a repulsive interaction because of the hard core. It
is speculated that certain “organic” superconductors and “heavy
Fermion” superconductors may also involve triplet pairs or possibly
singlet £ = 2 (“d-wave”) pairs. These all have low T.s, and it
seems to me unlikely that exotic pairing could lead to a high 7,.

9.3. Bose Condensation

If we could regard a Cooper pair as a good composite particle (as we
can a “He atom, for example, when probed at energies of a few eV or
less) then a Cooper pair would be a Boson, having spin 0 in the
singlet £ = Ocase and spin J = L + § with J = 0, 1, 0or2in the ¢ =
i triplet case. In ordinary metallic superconductors, Cooper pairs
actually have a large radius & ~ 102104 A, and are therefore
strongly overlapping, and poorly defined composite  particles.
Nevertheless there is a sense in which the BCS ground state is a
Bose condensate of Cooper pairs. Therefore it is appropriate to
review Bose condensation here. It should be born in mind that
unlike the ideal gas Bose condensate, in the BCS case the Boson
pairs do not exist except when condensed. However, it is possible
to imagine an alternate scenaric where a non-BCS {or at least
non-conventional BCS) superconductor is formed out of preexisting
pairs.  Consider for example, “He atoms, which are gocd Bose
particles up to T > 10¢ K. The superflnid transition occurs at Ty =
2.18 K which is quite close to the condensation temperature 3.2 K of
the corresponding gas of non-interacting He atoms. If these
particles were endowed with a special charge which enabled them to
couple to external fields without altering their interaction with
each other, then the superfluid phase of “He would be
superconducting.  Each “He atom is made of two electrons and an
alpha patticle (two Fermions and a Boson). Thus this imaginary
charged gas of “He atoms would be a non-BCS superconductor in which
Bosons based on electron pairing would be formed at very high

temperatures (almost 105 X) but would condense only at low
temperatures (2.18 X).
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The idea of Bose condensation was put forward by Ein;tein? who
realized that the formula which fixes the chemical potential u; for
Bosons,

N = [exp@Ba-pp) - 111 9.12)
k
is not necessarily correctly expressed by the corresponding integral
(s]
N = [ deNe) fexpeu) - 117 ©.13)
o

Let us assume that the Bosons are free particles af mass m.
Equation (9.9) for N(¢) applies to Bosons as well as Fermions. Then
Eq. (9.13) becomes
00
(Beoy?? = cq| dx x> Hexp(x-ppp) - 111 . 6.14)
0

The quantity Su, must be negative in ord'er. for t}?e Bose-Einstein
occupation function tc be positive. The:? difﬁcz_;}ty is that for d >
2, Eq. (9.14) has no solution for Bu, if Be, is too.larges‘ because
the integral in (9.14) is bounded above by the value it attains when
up = 0,

D dx xd/2-1

P manl ald) - (9.15)

Cd

For d = 1 or 2, q(d) is infinite which means that a so_lution Bup < 0
can be found for any value of Bg,. However, q(3) is ~0.0586, so
that there is a minimum value of Bg,, corresponding to 1/8, = kpT, =
6.62 &, and for lower T, no positive value f)f By exlstvs wh_lch
satisfies Eq. (9.14). Einstein resolved the dilemma by obssarw'ng
that the process of converting (9.13) to (9.14) does not .do justice
to the discrete nature of the sum at small k. In particular, the
minimum energy state, ¥ = 0, must be treated separately, and can
develop a macroscopic occupancy below T, ‘ Anderson [16] has
discussed how this macroscopic occupancy requires phase coherence,
and Yang [17] has shown how this state exhibits wmvhat he calﬁ
“off-diagonal long range order” (ODLROQ), a property which wm}lc‘i lea.f
to flux quantization, the Meissner effect, and superconductivity i
icles had charge.
the p?tm(i:sc interestingg to notice that dimensionality plays a large
role in Bose condensation, in a fashion clcseiy related but
reciprocal to the role of dimensionality discussed in Sec. 2 for
pair binding. In low dimensions, there are proportwnatel.y many
states near ¢ = 0 to accommodate the Bosons (because N(g) is large)

1N n Frm A m A thasma mma Faccine ctotasn wane 6 em 3 obisk fasasac
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condensation into the ¢ = 0 state. In the jargon of phase
transitions (of which this is the simplest example) “enhanced
quantum fluctuations” in low dimensionality destroy the condensed or
ordered state. But exactly this availability of low energy states
in low d is what promotes pair binding. This creates a dilemma for
Boson scenarios of superconductivity: If d is low, Fermions can
more easily bind to form Bosons but can’t Bose condense, whereas if
d is high, condensation is permitted but binding of Fermions into

Bosons is suppressed (except in degenerate Fermi systems where the
Fermi surface promotes binding).

9.4. BCS Theory for T,

At high 7, the thermal broadening of the Fermi surface eliminates
the binding of Cooper pairs. As T is lowered to T,, a collective
rearrangement occurs in which all electrons near &p bind into a pair
condensate. Below T = T, energy 24 is required to unbind a pair of
electrons from this condensate. This “gap” 4 is temperature
dependent, and goes to zero as T increases to 7T,. This is analogous
to a ferromagnet, where the energy required to flip a spin goes to O
as T approaches the Curie temperature T, from below. In fact, the
BCS theory is completely analogous to a mean field theory of a
magnetic transition, so it is appropriate to review the simplest
such theory, the Curie-Weiss theory of ferromagnetism.

Consider o permanent moments #; which experience an external
field B but not each other.

Hewr = - L u;°B 9.16)
i

Elementary statistical mechanics shows that the susceptibility x =
3M/9B is

Hu?
Xo = TH- ©.17)
k gT
(this is for s = %; classical spins have an extra factor 1/3). Now

suppose there is an interaction between moments

Hip = -1 T meuy (9.18)

<ij>
where the sum runs over nearest-neighbor pairs. Mean field theory
replaces y; by <u> + &; where the fluctuation diis py - <u> and is

regarded as small, Omitting quadratic terms didj, (9.16) and (9.18)
can be combined
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Hyr = - L #°(B + d<u>) 9.19)
i

where <u> = M/.#and z is the coordination number. The magnetization
of the system described by (9.19) obeys

M = x,(B + IM/A) = 3 B (9.20)

X = X/l - ZyolA) (9.21)

Using Eq. (9.17) for x,, the mean field susceptibility x divc;:lies as
c/(T-T,) where T, is the solution of sza/:Af = §, or T, = zJ,ul B ’
I; the «case of superconductivity, there is asg ‘i
susceptibility which diverges as T, is a‘plprofa‘c}lxgd fré.:mthii)mir:, hig;cl e1rl
i ilable field an
does not couple to any readily avai t e
i hat plays the role of the
from measurement. The key question i3, W
“order parameter”, analogousto M = Z,-<u,'>for Fhe magz{xetc.l g’he }?CS
answer is that a nonclassical quantity, the “pair amplitude”, pz:gs
this role. Playing the roles of the moment operators j; are the
pair creation and destruction operators

by = Cke Cope

n.&.
by = clp Che - (9.22)
Suppose we imagine a field F which coupled to such an operator

Hy, = -Lbf Fe'® + he (9.23)
k

where ke means the Hermitian conjugate term, Then in response there
would be a pair field

¢ =T (by) (9.24)

k

and the pair susceptibility would be
Xp = g% . (9.25)

To compute ¥, We can use a Kubo-type formula
o0
‘it + , (9.26)
= - 3, [ ae (i, b o)
xp(@) ) ¥, ] (

completely analogous to a well known Kub{) fgrmula for thclmagn;:uc
case [18]. For non-interacting electrons it is easy to ¢va u_ayﬁc q:
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(9.26) becomes

= [deN(e) tanhg (e-u)/2

@ - 1-21,
#() = %2@: IO E Tl

2ex-u)rhw

At T = 0, this integral has a logarithmic divergence arising from
the sharpness of the Fermi surface. It is convenient to introduce a

cutoff (kp® - |g-u|) into the k-sum in (9.23), to avoid an
uninteresting  wltraviolet divergence in Eq. 9.27). The
susceptibility then becomes
1O = % Nep) [ ap 2I0Ee2
k58
= N(egp) log 1',;,36) . (9.28)

The last step above is a familiar manipulation in BCS theory and is
explained, for example, by Rickayzen [19].

Notice that both the Cgric susceptibility x, for free spins,
and the pair susceptibility, xp for free electrons, diverge as T -
0.  These systems become infinitely polarizable and an arbitrarily
weak interaction favoring alignment will induce a spontaneous
polarization at low 7. The analog for superconductivity of the
magnetic interaction (9.18) would be a term of the form

. 0.
Hea = -V ¥ biby 9.29)
k&’
where c.o. denotes that a cutoff is used as in Eq. (9.5). The
subscript “red” stands for “reduced” as will be explained below.
Mean field theory now replaces b b_g <bg> plus the _{luctuation O =
b; - <bz>. The same is done for by, and the term §;8;" is dropped.
Then the external field in (9.23) and the mean field version of
(9.29) combine to give

HMF = - E bZ(FCin' 4+ Vd)) (9'3(»
k

where Eq. (9.24) is used for ¢. This equation is the analog of
(9.19). Finally the pair field ¢ is computed

.

= 2pEF Y + Vg) m gy, Y ©.31)

o
Xp

Xp =~ (9.32)
1- pr
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pair susceptibility in mean field approximation. It giverges at @ =
0 when T = T,, where T, is the solution of 1 = Vip(Te). Using Eq.
(9.28), we find the famous BCS result,

7T, = 1.13 @ exp(-1/N(ep)V) . (9.33)

This is the analog of the magnetic result T, = 2Jullkg.  The
exponential dependence of T, on 1/V tends to make T, small, and is a
consequence of the logarithmic divergence (9.28) of the
non-interacting pair susceptibility.

In the case of magnetic systems, mean field theory is not
usually a very good approximation; especially in lower dimensions 4
< 3, the neglected fluctuations qualitatively change the behavior of
the system. For superconductivity this is usually not true. Unlike
Eq. (9.18) where only z nearest neighbor spins j interact with spin
i, in Eq. (9.29) the number of wave vectors k' interacting with %
grows as the size of the system, making fluctuations relatively
unimportant. The BCS solution is exact in the thermodynamic limit
for the interaction (9.29). However, unlike the magnetic case, the
interaction (9.29) contains only a small piece of the complete
interaction. If a pairwise interaction Virp,rp exists between
electrons, then, expressed in a Bloch-state basis, the interaction
is

+

+
k+q0° k" g0 K o ke 934

Hx’m‘ = E V(kskl )Q) <
' go0’

The interaction (9.29) has taken only a small subset of the terms of
Eq. (9.34), namely those with ¢’ = -¢ and k' = -k, and is called the
BCS “reduced” Hamiltonian. The coupling constant V(-k,k,q) is then
relabeled as - Vik,k+gq); the sign change is a peculiar BCS
convention which allows attractive ¥’s to be positive. The final
treplacement of V(k,k+g) by V in Eq. (9.29) is only a convenience
which permits a closed form solution.

There is no proof that the terms omitted from Eq. (9.34) atre
innocuous and cause no further new phenomena, but the success of BCS
theory provides empirical proof for many materials. BCS theory is
built on Landau theory which asserts that all terms of (9.34) are
absorbed in building a ground state and quasiparticle excitations
which interact weakly. BCS theory adds to Landau theory the
hypothesis that a small subset of terms of (9.34), namely (9.29),
have an important additional effect in altering the ground state and
excitation spectrum. All remaining terms are believed to define the
parameters of the Landau theory, but not to alter it qualitatively
or destroy it.
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9.5. The Interaction in BCS Theory

A rigorous procedure for locating 7, within the philosophy of BCS
theary is to find the divergence of the pair susceptibility Eq
(9.26). The mean field theory of Sec. 9.4 is exact (i;l thc;
thermodynamic limit) for the special “reduced” Hamiltonian (9.29)
but for a more general interaction, such as (9.34) 01: i%
elcctror}—phomn interactions are present, a more powerful scimcmc for
evaluating Eq. (9.26) is needed. This is provided by graphical
(Feynman-Dyson) perturbation theory. In order to use this theory, a
related correlation function is needed [20], '

xplimy) = % k}:kl Jﬁ do @49 (Tolbr, (B0 (9.35)

Hcri g is an n?iaginary time, wjy is a Matsubara frequency, and Ty is
a m.ncfmdcrmg” operator, From the function (9.35) the
susceptibility (9.26) can be retrieved, but (9.35) is better suited
to the .devclopment of a systematic perturbation theory.

Fl]‘S.t consider the case where the only interaction is the
reduced interaction (9.29). Then we should be able to recover the
BCS results (9.32, 9.33) from perturbation theory. The terms in the
perturbation theory for y, correspond to diagrams:

I

Kk kK k4

X =
p + ! ¥ Lot S (9.36)
-k ¢ -kd ~k'¢

After integrating over k and k', a simple infinite serigs results:
Xp = Xp * xpVip + -+ The r'® order term is just XO(VXO)" and the
sum c_>f the resulting geometric series is just Eq. (‘g.BZi Notice
that because of the form of H,,;, there can be no terms
corresponding to graphs like i

N k4 k+q4
o) ;;’ 5 \;; (b) T k'+gh
a) kt K4 k4 b
. ! 9.37)
~k¥ s KA
-k -k-qy

although any physical imteraction, such as (9.34), permits them.
These g?aphs are important in a complete theory. Graph (a)
?cnormahzcs the one particle properties and graph (b) screens the
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Next consider the case where there is only an electron-phonon
interaction
+ +
= +a (9.38)
Hiﬁl - kg Mk,k+Qck +QO’CECO’(aQ Q)
o

H,

, +
T gkc:acka + 3 hwg agag - 9.39)
ko o

Tt should be understood that both phonons and‘eiectmns have band
indices and the symbols k, O can be considered short for (k,n) and
(Q.j). Many new kinds of graphs are possible. Fortunately, only a
simple subset is important:

- + e (9.40)
Xp = \ + +

i j i 3 it i toally more
This looks exactly like Eq. (9.36), but it is ac _ mo
complicated.  The double lines are shorthand for other infinite
series:

A (9.41)

|
2
;
Q
§

(5.42)

Equation (9.42) renormalizes the phonon f'requemies, Fortunately,
if the frequencies are known from experiment, these are a,.!re.ady
renormalized so we can bypass this step. Un.fcrtunately? if the
frequencies have not been measured, tbe.rz cvaluatmg (9?42) pbmjpcrlly
(including Coulomb effects not shown in (9.42)) is very d%ﬁ}cu t.
Weber [21] and Weber and Mattheiss [22] have‘made 2 good ?r@h'mmax;y
attempt on oxide superconductors, but tl}@i}“ work whas ‘ adjustable
constants and is not quantitatively predictive. E?quatmn (9,441_1)
contains the “mass renormalization” of the electronic states which
ses a significant correction to 7. ﬁ
Came;vicﬁgihc terms of Eq. (9.40) are summed, an imia?gml @guatmn
results which is different from the original BCS equation using the
Bardeen-Pines interaction. The reason for the d{ffcran.cg ts that
there is a time-delay in phonon pmpagatim}, This resylts in an
w-dependence of the gap A(k,w) and of the integral equation. Tigg
Eq. (9.40) corresponds to a time-dependent g@mfagmamm? af’ Bhl
theory., It is called Eliashberg theory, and hasr been thomgg y
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metallic superconductors.  The explicit construction of Eliashberg
theory by this route was done by Allen {20] including Coulomb and
impurity effects.

Besides the graphs shown in Eq. (5.40-9.42), it is appropriate
to consider graphs like

te) ;5((“ § ) M~ (9.43)

These have phonon lines crossing each other. Migdal [23] has shown
that each graph of this kind is negligible in comparison to a
similar but uncrossed graph which is already contained in Egs.
(9.40-9.42). This situation, known as Migdal’s “theorem™, is
special to the electron-phonon problem, and is related to the
smallness of a parameter sometimes denoted (m/MYI2) but more
properly denoted as Nigp)icwp.

Next consider the case of an ordinary pairwise Coulomb
interaction as in Eq. (9.34). ‘There is an important set of terms
which is the analog of Egs. (9.40-9.42).

Xp = L (9.44)

= — b \ (9.45)

(9.46)

Equation (9.46) is the Coulomb interaction screened in random phase
approximation (RPA), and Eq. (9.45) represents the “screened
exchange” approximation to the electron quasiparticle  states.
Formal answers can be written for the theory at this level, but
evaluation of these formal expressions for real materials is very
difficult. To make matters worse, none of the graphs analogous to
Eq. (9.43) are a priori negligible. Formally one includes many of
these by inserting “vertex functions” into Egs. (9.45) and (9.46),
making them “formally exact”. Like Eq. (9.42), Eq. (9.46) and to
some extent Eq. (9.45), correspond to measurable spectral
properties, but such measurements are normally dane anle in fmiead
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spectral ranges. Thus we often must guess at. the appropriate
sgs;ning function and quasiparticle energieij aang LDA (local
i imati i t guide.
ity approximation) band theory as an imperfec .
dens }gin;ﬁgy, consider a generalization of the graphs like (9.43a),
that is, “maximally-crossed” graphs.

T
i T S (9.47)
] Y > =

If we redraw the graphs, they simplify as in

“"‘“E‘Ei_% (9.48)

1 ]
i i
i

There is a piece of this graph which is very closely akin to the
transverse magnetic susceptibility y..,

¥1 Q@) = -4} J‘dteiwg([CZ+Q¢~(?)C};¢(¢),C:I»Q&(Q)Ckl ‘T‘(O’)D 9.49)
k k"o

k+ Qb k+Qt k+Q?
X = + E e (9.50)

i

Ky k¢ k¥

In the paramagnetic state, x4. is cquivalenf; to the longétudmil
susceptibility x,,, which for @ - 0, @ > 0 is the rt;e;sx;rie fa -
dM/9B. Experiment shows that some metals such 'a‘s ﬂ? l:mdger
values of y corresponding to incipient ferromagnetism. bet dder
series (9.50) contains a mechanism for the enhal}ce.me{nft., ;1 b
not possible to prove that other graphs are mmgmllcind. .
simple models [24] this series (9.50) can bc? eva uic ,iven :
Imy +.(Q,w) shows peaks which are wcll:;enough defined m. e gt -
name, “paramagnons”’. These “particles h_ave not been ;:a.sg 4;) <
by neutron scattering experiments. If we bend the graph (9. y

again, it looks like
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kKt Ky

_9._
1 = 8.51)
I -k'4

This graph is interpreted physically as a pair of electrons
exchanging a paramagnon and flipping their spins, This is a
well-defined event in metallic ordered magnets such as rare earth
elements where itinerant nonmagnetic ¢lectrons interact with the
ordered spin array of the localized f electron system, but it is a
fairly fuzzy event in 2 paramagnet.  Nevertheless, paramagnons
provide a potentially useful physical concept. Unfortunately there
ate many other high-order terms in perturbation series related to
(9.51) but not easily summable. Paramagnon theory is not especially
well-defined. At some point we are forced to stop looking for more
graphs, sum up what we have, and hope to explain 7. Spin
fluctuation graphs of the type in Eq. (9.51) are harmful to singlet
superconductivity, and this explains the absence of
superconductivity in Pd. The basis for phonon mechanisms as well as
plasmon, exciton, and weak-coupling spin-fluctuation mechanisms are
all in Eq. (9.35) and its graphical expansion. Only for the phonon
part does the perturbation series converge rapidly enough to be
treated rigorously.

9.6. The BCS ground state

A collective pair condensate should have a wave function of the kind

Po = MYy, 1wty .. Wiy} (9.52)

where ¥ is a pair function like Eq. (9.2) and & denotes
antisymmetrization. In fact, the BCS wavefunction has this form
[25] but it is usually written in a very different way., Notice that
the electronic wavefunction for N/2 “He atoms would have the same
form. Equation (9.52) is even under exchange of pairs of indices
such as (1,2%(3,4). Thus Eq. (9.52) can describe composite
Bosons, but in the BCS case, different ¥’s so strongly overlap that
such an interpretation is not Very appropriate.
By analogy with Eq. (9.2), (9.52) can be rewritten as

|#2) = (F g®) cis cfmmlﬂ) (9.53)

whete |0) is the vacuum. Because of the anticommutation relations
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of the c}t’s, this state is fully antisymmetrjc, but unfortunately
very awkward for calculations. Therefore a trick is used:

| P5cs) = exp(F g®) ck+ c xa)|0) 9.54)

The series expansion of the exponential in (9.54) contains thg term
(9.53) and many others with all possible exponen@ n. Only if Eq,
(9.54) is dominated by terms with # = N/2 does it make a sensible
approximation to Eq. (9.53).

The next trick is to rearrange (9.54)

| Pacs) = B expe®) ci c14)]0)

=1 (1 + gk ck+ c1za)]0) (9.55)

line of (9.55) is an exact consequence of the fact

lel_l;(tﬂfcf;e cl;egji)z = 0. gI‘o normalize Eq. (9.55}/,Zeach factor .(1+gt(}1:)
Cr+ C.zy) should be divided by (1+|gk)|?) . To remevc;: ke
ground state of a normal metal, choose g(k) - « fgr & < &pan g(_)
= 0 for & > &p. The probability that a statsnk is occupied is y:ik 1;—
|gx|2/(1+ | gk|®, the mean number of electrons is 227,%% = (N} af It e
rms fluctuation [(N?) - (N)Z/2 is Z[Eknk.(lmk)]* whlch is cssf
than VZN, i.e. small enough to justify using (9.54) in place o

2 s
(g.svgquation (9.55) is the standard form of the BgCS wavefunction,
It is very convenient for calculations. The g(k)’s are treatcg as
variational parameters, and turn out all. to have the same p a}fe,
gk) = | g(k)!eE . The amplitude for having exactly 2n elcctronf has
phase n¢. The phase difference between t'hc component of ?’ Vu; n
pairs and the component with » + 1 is al_ways d) This p a}s’e
coherence is an essential property, leading directly to the

ibility of supercurrents j, « V.
pombfillxlghcr dé)tails on ﬂ:]isc ground state and excited states are
available in many texts, e¢.g., Rickayzen [19].

9.7. Off-Diagonal Long Range Order (ODLRO)

The essence of BCS theory is the pairing instability and the
formation of a coherent pair condensate. Yang [.17} attempted tc;
answer a deeper version of this question: What is the essenc; (;)s
superconductivity which has somehow been correctly captured bydv y
theory? His answer is that it is ODE:,RO, a property of the reduce
density matrix, The functions are defined
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fi(r,0') = tlp W) P’ (9.56)

£0,07) = t1lp Vi) VE@ Wal’) #ui')] ©.57)

o, . . -BH . . A
where p _%che density matrix, q}_qual to e p /Z in equilibrium, where
Z = tre The operator Wweg(r) creates a particle of spin ¢ at
position r. By way of contrast, consider a correlation function

gr,r’) = tr[p én(r) dnr’)] (9.58)

where én is the deviation of the particle density from it average
value

S Al s -

dn = g wa(r)ww(r) -n . (9.59)
In a liquid, g(r,r') - 0 as [r x| gets large, but in a solid,
gr,r') > (dn(r)y(dn(r’ )) which remains non-zero for large |r-¢’ |,
This is an example of long-range order, If f; or f; [Egs. (9.56),
(9.57)] shounld remain finite ag |r-r’ | gets large, this would be an
expression of ODLRO, a purely quantum effect involving off-diagonal
clements of the density operator which have no classical analog,
Yang showed that fy(r,r’) cannot remain finite at large |r - ¢’ | in
a system of Fermions, but in a Bose condensate, f; becomes
(vr@){ v’ )) which is nonzero at large separations. Similarly for
a normal metal, f5 goes to zero at large [r - ¢’ | whereas in a BCS

superconductor, f; becomes (y/ (r) VaOW v ) we(r’ )y which is not
zero. To be specific, since

Va(r) = Z uln) cpa (9.60)

the pair amplitude has expectation value
(v+@ vi@) = T v |2 gl + gty | (9.61)
k

This has phase ¢, and vanishes in the normal state.

Yang made the following statements based on either proofs or
plausible conjectures: (a) There is only one route by which f; or
f exhibit ODLRO and this route is chosen by the ideal Bose gas (for
f;) and by the BCS superconductor (for f5). (b) The existence of
ODLRO is a sufficient condition for quantization of magnetic flux,
the quantum being hcle or he/le depending on whether f; or >

exhibits ODLRO. (c) From flux quantization, the Meissner effect and
superconductivity are almact  castoinls dawieoaii. - .
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statements it is expected that ODLRO will be a prfopertyl éxgjﬁgﬁzﬁi
' T te type of super
uperconductors, but of any altcma‘t reo
zgihs Ega,y be found. In the “RVB” picture to b% Ld}ggmbcd 2ater£
i : tate with O . s
Anderson conjectures a2 ground s . _
counter-example, Frohlich [26] made a very 1meresmgfcot;iggsgfmz
i i * : ” ed on an i
-dimensional “superconductor basv‘ i
Zggrg;density--wave (CDW) distortion which mtmiuczgiD% gap faz t}:c
i i bility, the is free to
Fermi surface. Because of mcomgmensura , :
sgdc in a perfect crystal, carrying current in a collective :Vaiy.
The effect is realized in such materials as NbSey. lfjnfcmlgr;iez}
uctivi i by even a small num
tfect conductivity is destroyed by : of
fxiipurities (as it is also in a pure non»»supez‘co@mctmg metal at T ‘
0). In fact the impurities pin the CDW giving zero rvconduc;milrty
ur{less the field is big enough to de~pm.the CDW. The ;mrif;tgﬁ
ingredient in Fréhlich’s theory (and also in a perfect norma

at T = 0) is ODLRO.

9.8. Eliashberg Theory of Electron-Phonon
Superconductors

This is a much studied subject with a recent review [5] so this

ti ill be a series of comments. ,
SGCth(i;)Wﬂle basic equations can be derived from Egs. (9..40~9.%1i]2)
and (9.44-9.46). The interaction is both r and « dependent. ¢

Coulomb interaction in first approximation is

V, = (K 1,4 ¢|fdr” el @) 2/ |c”2" | [kt,ke)  (9.62)

3 7
and is rtepulsive over a large fraction of (r,»",w)-space.  The
electron-phonon interaction is

2 2,
Vo = 2|My’ | fioy’ / Wl -] (9.63)

and is attractive when wz < wz,k’. The dimensionless parameters 4
and g are defined by Fermi surface averages

-4 = Nep) (Voult k' ,0=0) (9.64)

p o= Nep) (Velkk' ,0=0) . (9.65)

Note that (9.64) is identical to Eq. (9.8).
° (b) In 2 naive BCS approach one would expect
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T(BCS) = @ exp(-1/(A-)) . (9.66)

In an approximate treatment of Eliashberg theory [27] one gets

T.(McMillan) = @ exp [4/( I?% - u*)] , 9.67)

ut = gll+u log(ep/fiwp)) . (9.68)

The parameter A is “renormalized” by the factor (1+1)"! which enters
via Eq. (9.41). The parameter g = 1 is “renormalized” to g* = 0.1
by an entirely different effect: The slow propagation of phonons
(retardation) allows electrons to interact without being close at
the same time, thus reducing the Coulomb repulsion.

(¢) The parameter A ranges from 0.1 (Cu,Na) to 1.5 (Pb) or even
larger (z 2 in amorphous Pb/Bi alloys). When 1 2 1.2, the form of
Eq. (9.67) starts to fail; after a wide crossover region, the
asymptotic regime with 7, « v occurs (with 4 2 10, an apparently
unrealistic case) [28].

(d) Detailed, first principles calculations of T, are still
quite unreliable because of the difficulty of calculating wg. If wg
is known from experiment, the reliability of theory is not bad.

(e) T, is bounded above by 0.18/A{w?y. This can also be
expressed as 0.18V.Z ;57,/M,, where a runs over atoms of mass M, and s,
is the “McMillan-Hopfield parameter”,  Although values of 7T, as
large as 100 K are allowed, this would require fairly extreme
choices of 5, and M,,.

) A practical limit to T, is apparently set by problems of

structural  stability  [29]. As  Eq. (9.42) suggests,  strong
electron-phonon coupling drives phonon frequencies down, risking a
second order instability, First order instabilities are probably

more serious, but very difficult to anticipate theoretically.

(8) Although most high 7, superconductors are quite anharmonic
for reasons given in (f), there is little evidence to suggest that
anharmonicity per se affects T, beneficially or adversely relative
to a corresponding harmonic solid with equivalent vibrational
frequencies. Anharmonic effects to a large degree are absorbed into
the structure of Eliashberg theory with no experimentally detectable
change [30].

(h) The new oxide superconductors probably can not be explained
on the basis of electron-phonon theory.  This is suggested by
isotope effect measurements, attempts to calculate 7., and past
experience on the difficulty of getting high T, by this mechanism.

(1) On the other hand, a very small isotope shift by no means
proves anvthing., A nice analveic ic hv Baimar and meti_ resa
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PdD has a higher 7, than PdH (reverse isotope effect) and yet is
believed to be electron-phonon induced with a healthy T, ~ 12 K.

9.9, Excitons and Plasmons

Given that known electron-phonon superconductors all have T, < 23 K,
it is logical to lock for new mechanisms if higher T’s are wanted.
It is also logical to blame low T,’s on the low energy fiwp of the
phonon. This immediately suggests that a higher-energy Boson might
act in place of (or in addition to) phonons, yielding a higher 7.
The subject has been nurtured by Little [32] and Ginzburg [33];
recent reviews are by Ginzburg and Kirzhnits [34], Ruvalds [35], and
Little [36]. Since they have been the target of some ridicule
(Matthias [37]), it is appropriate to acknowledge that their
optimism (although not yet their specific mechanisms) has now been
validated.

When a test charge is inserted into a solid, three kinds of
distortion occur: The lattice distorts (virtual phonons), the
electrons can repopulate any partly filled band (virtual plasmons),
or they can mix in components from higher unfilled bands (virtual
excitons). The words “plasmon” and “exciton” are used quite loosely
here. To a spectroscopist, an exciton is a narrow resomance in Ime,
and a plasmon is a nmarrow peak in -Imgl. Most of the spectral
weight is not in narrow peaks, but broadly distributed in . It is
necessary to use all this broad structure to get a significant
interaction, and the usage of the terms “exciton” and “plasmon” is
correspondingly broadened. If the test charge is time-dependent
(for example, moving) then these distortions follow in time, with a
lag which is larger for a lattice distortion than electronic
distortions. A second test charge will feel both the direct
instantaneous repulsion of the first test charge and a
time-dependent attraction from these dynamical distortions.  The
usual Eliashberg picture assumes that electronic polarization serves
only to cancel part of the direct Coulomb repulsion, and that only
phonon  polarization is  sufficiently strong and retarded to
contribute to pair binding. Thus a reasonable question is whether,
in the absence of phonons, the other polarization mechanisms can (in
principle) cause superconductivity.

9.9.a. Plasmons
Rietschel and Sham [38] have answered this question affirmatively

for the free electron gas using the RPA (Lindhard) version of &
i.e. for the vlasmon mechanism. Their numerical calculations use
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the full (& and wwdepgsndém) Eliashberg equations with no other
interaction besides 2 4(Q,w)v(Q). This is always repulsive
(positive) for @ = 0, but has an attractive region for wy, < w < Wy
and OQfkg not too large. Their results depended sensitivity on the
density of the electrons, expressed by the parameter ry = 1.92/apkp.
For ry < 3, superconductivity does not ocour; at vy = 4, T, is ~
0.3 mK, and at rg = 5, T, is ~ 0.22 K. This result is surprising
for two reasons. First, w, is so large (iwpler = 0.94vry) that no
simple scenaric based on retardation can make this seem intuitively
necessary. It i3 a source of optimism that electronic pairing is
sufficiently versatile to take successful advantage of the limited
atiractive patt of (q,w) space. Second, alkali metals and noble
metals are not superconducting. It is difficult to see how the less
dense alkalis with 4 < r; < 6 could fail to superconduct given both
plasmon and phonon attraction, unless something else occurs to
cancel the plasmon attraction.

This question has been further addressed by Grabowski and Sham
[39], who approximately include the effects of the lowest order
vertex corrections and the graph with crossed Coulomb interactions.
The solution of Rietschel and Sham is totally altered by these
corrections, and the wnet effective interaction becomes again
repulsive. One lesson to be drawn from this is that
superconductivity induced by high energy Bosons is difficelt to
predict because results are very model-sensitive. We are unable to
calculate interactions to the necessary accuracy,  Grabowski and
Sham conclude with the remark, “One or two tens of degrees Kelvin in
the increase of T, above that due to phonon atiraction appears
possible, but a 7, higher than the lquid nitrogen temperature

. appears impossible by purely raising the Boson energies.”  Of

course, now that 7, exceeds 100 K, it might be appropriate to
rethink this conclusion.

For metals more complicated than alkalis, band effects become
significant and the fres-electron model becomes less relevant and
possibly misleading.  One measure of this is the f-sum rule, an
exact relation for any system:

(6:5]

3 !‘ drnet
s deop wes{opy = D00 (9 59
e AW m {9.69)
o
On the rtight of (9.69) n is the total number of elecirons (including

core electrons) and m is the free eleciron m
is veasonable to infegrate the left hand ¢ i an energy less
than the minimum for core sleciron exciia and to use f@rfﬁ on
the right the valence slectron density. In band theory, 27{w) has

In many cases it

two distinet parts, a Drude region representing  acceleration  of
electrons within nartialiv fillad hande Bk == -oF) and an interhand



326 Philip B. Allen

term These can be separately calculated; results are 2’gzw.en ﬁf;
Tabk: 9.1 for representative cases. In the fl;stdcalumﬁn, fﬁ,z is e
tributi ir 1 (9.69) from the Drude part of &5 Th
contribution to the integral ( | e ol o TR
b action of the spectral weig ’
last column gives the frac sp B
the intraband (Drude) channel. As materials become ma;@ cgr;gélecaﬁ;i
re bands i k and less room for -
there are more bands at a given . oom : ik
behavior. The result for LayCuOy is not paﬁhfiloggaé 't?df, tygn;i
f nphi al; lculation assumes LasCuQy is meta
of a complicated metal; the calc x Lagcu0q 1s e e
i i1 d that B is polarized in the
rather than semiconducting an ‘ ' metallic
sz plane. Table I shows that most of the eiect(ﬁ‘omc p@iar@ab:tllity
of complicated materials is in “exciton” (interband) rather than
“plasmon” (intraband) form. » N
’ There have been proposals that the negzly 2d pla;srfmfns fof
uasi-2d  metals like LayCuOy are @sp@cagllz benefmm} 011;
:lupcrconductivitv, but so far there is no convincing calcuigtlmn i(;h
this, even for an electron gas, let alone a real material w
s 1

interband dominance.

9.9.b. Excitons

Crudely speaking, two versions of this idea exist.v Allcmicr., t?;;?:é
and Bardeen (ABB, [43]) proposed getting a metfﬂ 11:;?0&5012.0 nﬂl:;t ae
i larizable, narrow gap semiconductc

contact with a polarizable, , or that
metallic electrons would be able to interact strongly with imyr?oa,rgd
excitations of the semiconductor.  Pairing wm;ld ihztzadozz&;; thz
irtual excitations. It was not propose
exchange of these virtua ( wa oposed that the
irs § uired to bind to each other
electron-hole pairs should be requ > bind 1o e e Jorm
i itons istea > word “exciton” is used loosely
Wannier excitons. Instead the WO p ‘ ely.
describe the sort of wirtual excitation involved in the polarization

of a valence band. ) L
The exciton mechanism, like the plasmon mechanism, surely

A i Nb {40], NbGe
Table 1. The Drude plasma frequency Qﬁ for Ap and Nb v[ %ased _ﬁn
[41}, and LayCuQy [42]. The free cleciron velues ¢, saie 1 o
the ’assignc:d valences: AP, NbS), Ged), La@3), Cu(ll), a

O(6).

oy V2
ﬁﬁp(@V) ﬁa}p(é’;V) (.Qp!wp)
0.62
Ay 12.4 15.8 02
Nb 9.1 19.6 .22
Nb;Ge 3.7 19.5 32§
La,CuOy 3.0 17.2 .
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exists, and helps in the sense that it weakens the direct Coulomb
repulsion of electrons. Unlike the plasmon in the free electron gas
studied by Sham ef al., there is no obvious simple model system
which should be subjected to rigorous theoretical investigation,
The merit of the ABB paper was that it proposed a testable mechanism
involving thin metal layers on semiconductor surfaces.  Careful
experiments by Miller ef al. [44] did not see the effect. Inkson
and Anderson [45] thought the ABB estimates for T, were much too
high, and that no significant improvement of T, ought to occur by
this scheme,

The other version of this idea is in the original paper by
Little [32]. It is almost the same as the ABB mechanism except it
is presumed that it is better not to have intimate contact between
the electrons involved in pairing and the entity undergoing
electronic  polarization. Spatial  separation  should reduce the
interaction strength, but even at 14 A, elr is 1ev if unscreened.
Separation eliminates exchange interactions between Cooper pairs and
polarizing electrons, which otherwise would reduce the attraction,
Little also proposed looking in 1d organic systems with polarizable
side chains. In recent years superconductivity has been found in 1d
“organic” metals [6] but these do not look much like Little’s
proposal.  Two dimensions is probably more favorable, and Little

[36] proposes that the out-of-plane oxygen-copper bonds may be the
polarizing entity.

9.9.c. Excitonic Insulator

If a semiconductor has a very narrow indirect gap, then in principle

electrons could be promoted across this gap, motivated by the
possibility that they could gain more energy by binding to the holes
left behind than they lost in promotion energy. This is called the
“excitonic insulator” pbase [46]. Lo and Wong [47] proposed that
additional carriers in such a System might, be superconducting,
Abrikosov [48] pointed out that a phase related to the excitonic
insulator could be a candidate for a high T, Superconductor, namely
ane where instead of an exciton condensate, the heavy holes

crystallized and the light electrons paired by exchanging “phonons”
of the hole lattice.

9.10. Spin Fluctuations

In a magnetic medium, a free electron can scatter off the spin

System, emitting a spin wave. Superconducting systems are generally
not magneticallv ordared svrsnt masloac. —o . X
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T, as in rare-earth-substituted  YBasCujz0y (sce‘ {.ihapnter 3). An
exception is URupSiy [49,50], and supcrconducuylty in ﬂms. hea\.ry
Fermion metal may be caused by exchange of antiferromagnetic spin
fluctuations. A more common situation is for a metal to bc c.kzsc. to
magnetic ordering when becoming supﬁr.cmductmg, E.n this sﬂuz}tion
one expects to have relatively inngd%ved clacal spin ﬂucmatmné,
for example, locally ferromagnetic reglons in a chrrgmagn@t gbgve
its Curie temperature, or in a metal like Pd which is an mmp}cm
ferromagnet.  The scattering of electrons from t}}cse ﬂuc?uatlons
will alter the tendency to form pairs. Usually thz§ alteration has
been assumed to be harmful. Pd is not superconducting even though
the value of A is probably ~ 0.3 - 0.5. The reason almost
certainly is that a spin up electron wi-il attrgct other ﬁlectw{ons }?f
up spin, creating a locally ferromagnetic region, and 'redpeihimg the
down spin electron needed for singlet Coop?:r pairing. This is shown
diagrammatically in Eq. (9.51). Clearly ‘this SBME Process s:heuld be
helpful to triplet pairing, and is believed to be an important
source of triplet pairing in liguid e, So far there is 1}0 proof
that any metal has a triplet pairing stats,ls althm.xgia UPty and other
heavy Permion systems, as well as some “orgamc superconductors,
are possible candidates. These candidates all have a low Tg. .

Antiferromagnetic spin  fluctuations are a more (:Momphcat@d
situation [51-33]. It is not so obvious whether an up sgm ,elsctron
will create or destroy local antiferromagnetic po’]aﬂzatiown, or
whether this will attract or tepel other electrons of gppas;ﬂ;e (or
paraliel) spin.  Different answers seein to emerge in s%ﬁfe?em
fegions of k-space and t-space. These questions were first raised
because of the experimental discoveryu of cl_oscly related
antiferromagnetic and superconducting states in orgamic metals, and
then in heavy Fermion metals. Recently they havg acc!mred a new
urgency because of the discovery Co}f amifeg)mmagnemm in LasCuly.y
i nd YBaz;Cu [55] (see Chapter &). .
B4 i\.n intcrzcstiigési};nple scenario has been ?roposed b;{ Schmefﬁfer
et al. [56]. The idea is that free carriers in 2 material wanting
commensurate antiferromagnetism will weaken the té%ndincy to ordgr
(for example, by changing the Fermi surface “nes“tmg propertyhln
x(@). Thus an up-spin electron repels_ local spin order.  Other
free carriers, with either spin orientanon,. will ”bc 'atFracted to
the region of depleted spin, (called a “spin bag”) giving a mnet
attractive interaction.

9.11. Weak versus Strong Coupling

All mechanisms discussed so far are derivable by perturbation theory
- - . Sttt .. /T 0 A&\ ctartine fram a  normal
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Fermi liquid reference state; in other words, they are in the
“weak” regime. It is conventional to call Pb a “strong coupling”
superconductor because with 4 ~ 1.5 it exhibits deviations from
“normal” BCS-like behavior (24/kpT, > 3.52, etc.). But in the sense
used in this section, Pb is “weak”. An example of “strong” would be
SHe viewed as a collection of electrons and nuclei. At T ~ 1096 K,
one would have a plasma of electrons and SHe nuclei; at high enough
densities this would give two interpenetrating quantum Fermi
liquids. This would be the wrong Fermi liquid starting point for a
perturbative theory of superfluidity in liquid SHe at 109 K.

By analogy, exotic forms of superconductivity could emerge in
solids from highly correlated electronic states which are not
describable as ordinary Fermi liquids. Bipolaronic and RVB
superconductors are such proposals, and will be described in
subsequent sections. Neither of these yet constitutes a full theory
in the way that BCS is for Fermi liquids. One can imagine scenarios
in which the final superconducting state looks BCS-like, and others
in which it doesn’t. For example, the JHe case just described
starts at very high 7 and P as a Fermi liquid, and ends at very low
T and P looking BCS like, with a low 7 Fermi liquid in between, and
two crossover regions, one between plasma and JHe vapor, and one
between “He vapor and normal Fermi liquid *He (at T £ 1 K). But He
presents an alternate scenario, ending with a Bose condensate which
would be superconducting if endowed with an extra hidden charge to
couple it to external E-fields. This superconductor would not look
BCS like, and at 7, the superconducting state would evolve into a
normal Bose liquid,

Presumably all states share the property of ODLRO, and show
flux quantization, the Meissner effect, and supercurrents. Even if
the oxide superconductors turn out to be in the weak regime, they

have enlarged our vision, and a search for strong superconductors
will endure.

9.12. Bipolarons

In Sec. 9.2 the Cooper problem was addressed and solved in two
limits: The wsual Cooper limit [eg » Epg, &r » @] and the dilute
limit [ep « Ep, ep « &]. In the latter case electrons form mobile
bound pairs provided the attractive interaction is strong enough to
support a bound state (which requires a critical strength in three
dimensions). The “bipolaron” is just such a mobile bound pair of
electrons, bound by electron-phonon interactions. There is no
unambiguous evidence that bipolarons exist in any known solid, but a
plausible case has been made [57] that the metal-insulator
transitions seen in Ti.0O-» at 140 K and 150 K could be described ax



bipolaronic.  Specifically it is assumed that as 7 is reduced, Ti
atoms form dimers of Ti¥* (one dimer, on average, per cell, with two
undimerized Ti‘* atoms per cell). At 150 K the dimers form in a
disorganized, liquid form, and at 140 K these pre-formed dimers
crystallize into a relatively normal insulating phase. In the
“liquid” phase between 140 and 150 K one has pairs of electrons
bound to pairs of Ti’* ions and free to move by breaking bonds and
forming new ones neighboring undimerized Ti#* atoms which then form
new dimer bonds. Later Chakraverty [58] proposed that in the liquid
state the bipolarons could Bose condense to form a new kind of
superconductor.

Actually this kind of superconductivity is not a new idea. Ogg
[59] mistakenly believed that he had seen high 7 superconductivity
in metal-ammonia solutions. His explanation was that free electrons
might prefer to pair in cavities in NHj and could then
Bose-condense. The idea is identical to more modern proposals.
Another precursor of BCS theory [60] involved Bose-condensed
electron pairs and subsequently it has been shown that much of BCS
theory can be re-cast in this form. Leggett [61] worked out a model
showing the crossover from BCS condensation to Bose condensation of
molecular pairs. Other oxides besides TigO; have provoked
theoretical  speculation  about  bipolarons. S1Ti0O;  supports
superconductivity when doped n-type with n as low as 104%/cm3,
possibly the most dilute superconductor known, and thus a natural
suspect for bipolaronic effects.

A case closely related both to TigO7 and to CuO-based
superconductors is Ba(Pb;.,Bi,)O3 which is insulating when x > 0.35
and superconducting for x < 0.35, with a surprisingly high T, « 15K
occurring close to the phase boundary. Rice and Sneddon [11]
proposed that the superconducting phase was normal BCS and
electron-phonon  driven, but with increasing x and increasing
electron-phonon coupling, “real-space pairing” took over and created
an insulator. The real-space pairs are hypothesized to consist of
pairs of electrons bound to pairs of Bi atoms making Bift+-Bi’t
frozen dimers, i.e. another kind of bipolaronic crystal.

It is possibly accidental but nevertheless interesting that the
idea of bipolaronic superconductivity, specifically in Jahn-Teller
distorted systems, is part of what motivated Bednorz and Miiller [62]
to search for superconductivity in CuO-based systems. Scalapino et
al. [63] argue that CuO-based superconductivity —may be
electron-phonon driven, and on the border between bipolaronic and
BCS-like.

Finally, a related notion is the Anderson “negative-U” center,
an isolated but immobile bipolaron. An example is a vacancy in
crystalline Si, which has a stable neutral configuration; when a

S48t it debmnsn Jannlican at tha wracaneu oite a  lneal
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atomic rearrangement occurs which makes it energetically favorable
for a second electron (of opposite spin; a s.mgIetf pair) to bind to
the same site. The lattice relaxation overcomes the Coulomb
repulsion, as if there were a negative value for the on-site
“Hubbard” Coulomb repulsion U, This idea was originally proposed by
Anderson [64]. It was suggested [65,66] that if such sites occurred
in a superconducting metal, 7, would be enhanced by the additional
binding available if Cooper pairs temporarily fell into negative-U
centers. This creates a difficult theoretical problem, being a
hybrid of a perturbative BCS problem and a local non-perturbative
pFoblem with an internal dynamical degree of freedom (the lattice
distortion). Schiittler er al. [67] claim to have made some progress

b:y .n};tmsfical methods and to verify that the enhancement is
significant.

9.13. The Hubbard Model in Strong Coupling

The  best evidence that  superconductivity in  CuO-based
superconductors has something to do with the Hubbard model comes
from diffraction experiments showing ordered antiferromagnetism in
LayCuOy [54] and YBayCuyOgy, [55] (see Chapter 8). In this section
the Hubbard model will be discussed for large U and nearly
half-filling, In particular, the relation to a Heisenberg
antiferromagnet will be explained. Anderson [1] has recently
reviewed this subject.

The Hubbard model is defined by three specifications: (1) a
Hamiltonian

H = ig.};}’avc 5‘@?650’ + U A?Hﬁs{li,;, 5 (9.70)
(2) a lattice which defines the patiern of bonds <{f> on which the
electrons can hop with matrix element t, and (3) a filling factor x,
which I define such that x = 0 is the half-filled case (a standard
reference point) and x counts the number of holes as in
Laz ,Sr,Culy. The Coulomb energy U inhibits double occupancy. 1
now state what can be called the “Hubbard” hypothesis:

“;Hwbbafd” Hypothesis: The fundamentsal physics of
the oxide superconductors is contained in the Hamiltonian

(8.70) on 8 2-d square laitice for smsll numbers of holes
0=x= 0.2

Since the properties of the Hubbard model in this limit are not vet
under good theoretical control, there is no proof or disproof, and

tactivney tha forentbhacic G0 saemedad an 0 feaee ool LY
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suspect that it is wrong, but that a modified Hlibbs‘i}”%i i;ypztgheii
(with added features such as siﬁgg;mn«yh@r%m z:ffccm t;v? »;x,?:; ,tu
next mneighbor interactions) is fagh,, with §1gp§1§§ks;,~ t?c:x ilnj D f
riven by the Coulomb U term. This does not ?zm%m@ E."Z}ﬂ“%g ;";;k
testing the simple hypothesis E}ecags@ it may g@‘myotgs.% ? ‘m;gtlr
out the consequences of mediﬁcaﬂzm{, without first having a bette
3 ing of the unmodified model. o

under;(s;imfigg;iieogs versions of the Hubbard Hyp@@a;@; some 9f
which claim ultimately to give “weak” sv g@rgQ}i(im‘:wm? wf j;pm
fluctuations. In this section and ih@. next I will feﬁmfs on b:m&;?ﬁ_:
which hope to generate “stmx}g” ) mgmfgcxiimmgv.stg% @ ¥ brrs
condensing into a new state (cﬁmmeq by f.ﬁ:zwrsos} E?f %o «‘;; 2
“resonating valence-bond” (RVE) stam;,k This mm ,igt{ftv,fsdiv ‘3"'“{—‘6
conventional Fermi liquid, so the low T superconducting congensate
is ne aventional BCS. o 4
* ndt@iibi;pg;oach to understanding the strong-coupling I:Lbbmd mgﬁf
is exact diagonalization of :finitcwz;i;z@a systems, mL@t} :is %01‘;151
the x = 0 case. With one site and one iifurws ’z:i:,}:e: Af’(z {WQ
states, + and ¢, both having zerc energy. \i’v.‘i{}} two ;zms mu,g} z;(;
electrons there are six si:ams,(‘@ach ,’ii@sj::{"zbﬁd s ywa 1; ;@)
determinant: |1} = (1%,13), |2} = amw,,zl?p\iﬁ; = gi;f’g@é
4) = (14,29), |5) = (h;}ﬁ)y.md i@} = {M?:af”’“ .13.13- ﬂi Vh’avé
compared to U, H iz diagonal in !;hzsb baszé‘zu @ia;t;& axm;ﬁ ave
energy U, and 3-6 have energy 0. &iqui ﬂ;g ,?,::fz\; fm, ﬁ‘ a?d‘@m@
states of energy O remains, (|3), l@},;?m E / M;Jj; + |40 an one
state, 2-/2(|1) - |2)), has energy U. The singlet statc play:
special role:

i,
5.2

43y - {4 . O

§f
|VB) = 271124 - 1321) =

It is a Heitler-London “valence bond” §ta§l§§ :I‘wm cig@n:ztatcs ?iﬁ
mixtures of |VB) and ionized states 274114 + 24 t)"“;m
eigenvalues U/2 + V(UI2)?+ 412, For t <« U, the ground §;a e 15; c
| VB) state with a weak admixture of ionized states, and the energy
i 2
¢ 4tA/§] wthc number of “atoms” N increases, the s§ze ;}):’f the spac:;
grows rapidly, as QNIND? ~ 4V, Of thﬁscﬁ, exam}yq 2 correirp?nld
to states with only one electron per site, giving a 2 ; 2 !
degenerate ground state of emergy O when 't = !_On these sez; 5};
(denoted |Z)) are characterized by the spin orientation @E ch
site. It is this very large ground state degeneracy which makes

so interesting and difficult. )
pmblggr weven a gmodesﬁt nine atom Q’fﬁ%xl@)‘ 2d  array, dl:ei
diagonalization of the 48,620-order matrix s not easyé] ,
congiderable simplification occurs if t iz small, fz}mi ﬂ(x@ ;?ro cim‘j(;l
truncated to the 2N-order space (512 for N = 3x3) of singly occupie
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states.  This truncated problem has spins at each site but no
“charge” degrees of freedom. Hence it describes an insulator, as is
reasonable for small enough /U, The H-matrix is 0 in this
truncated basis, and it is necessary to do first order degenerate

perturbation theory in the parameter /I/. This introduces matrix
elements

(5" [yl 2) - 3 $Z [0 0|Z) ©.72)

between the states | Z), | £7) of the singly occupied subspace E(3) =
E, = 0. The intermediate states |n) always have one site doubly
occupied (E, = U). The resulting matrix (9.72) turns out to be the
same as the matrix of

Hey =3 ¥ (g00; - % (9.73)
< fe

where ¢ = (ox,0y,0;) are the Pauli matrices. When applied to the
two-site problem, (9.73) has eigenvalues 0 (triply degenerate) and
-J (singly degenerate) leading to the identification J = 42U, The
additive constant -J/4 per bond is then dropped from (9.73), which
is the antiferromagnetic Heisenberg  Hamiltonian. In a three-
dimensional simple cubic lastice, (9.73) has an antiferromagnet-
ically ordered low temperature phase (the “Neel” state), a phase
transition at Ty ~ J, and a high temperature paramagnetic phase with
disordered local moments. is is believed to provide a corrsct
qualitative description for systems such as NiO and CuQ which are
antiferromagnetic insulators at low 7 and remain insulating even
above Ty irrespective of whether the number of electrons per unit
cell is even or odd. (Alternative descriptions also exist for NiO,
etc;  spin-density-functional band theory captures at least some of
the physics correctly (see {697)).

In one dimension, the Heisenberg antiferromagnet has no long
range spin order, even at T' = 0. The ground state is given by the
famous “Bethe ansatz” [70,71], and is very complicated. It is easy
to see why ordered spins are not favored, by making variational
estimates of ground state energies using simple trial wavefunctions.
The simple antiferromagnetic state [Neel) is |14,2,,34,44, ... ) and
has energy per site -J/4, which is also the energy per bond, and
comes entirely from the s;,5;, part of (9.73). A “valence bond”
state |VB) of the form | VB(1,2), VB(3,4), ...) does better. Each
valence bond has energy -31/4, with equal contributions from the
three Cartesian components §;gs;q’. Since there are two sites per

bond, the energy per site is -(3/8)F, 50% lower than the Neel state,
The “quantum fluctuations” earried hu tha anaestans
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%(s*{s} + s}s':-) = SpSiy + Spsjy (9.74)
are responsible for destroying the ordered state for small spin (s =
%) and low dimensionality. In a two dimensional square lattice, the
ground state of Eq. (9.73) is not known.. It may be ordered
antiferromagnetically, but it is qg‘site certain that no long-range

ic order persists above T = Q.
magﬂ;fg;? C: ;.dptriangular lattice, the best “h{eel” state has three
spin sublattices oriented at 120 . It is not likely ﬂ:li}t mugh lolng
range magnetic order occurs in the ground state, The tma.nguh%r
geometry causes “frustration”. Anderson [72,73} argued tha: in this
case the ground state would be a “resonating valence bond” (RVBE)

state

|RVB) = ¥ c(P)| VB,(1,2), VB(3,4), ...} 9.75)
P

where the sum runs over all permutations P of bond arrangements. It
is possible that such a state is also .the ground state Qf the 2d
square lattice. Even if this is  not true,  still whfen
second-neighbor exchange coupling is 1ntroduceq or else a ﬁp}te
hole-concentration x, these sources of frustration could stabﬂx‘ze
an RVB state. Anderson [68] has proposed that an RVB state with
finite x would be a novel kind of superconductor. The scale of T
would be related to J ~ 1000 K rather than wp ~ 200 K.

9.14. RVB Theory

This theory starts with the hypothesis that for ins%zla'ting LayCuQy,
the ground state is of the RVB form (9.73). Next 1} is necessary to
add holes, or remove electrons, With a single hole, the
wavefunction becomes

|RVB, 1 hole) = ¥, ¢’ (P)|H(1)Na(2) VB(3,4) VB(5,6) .y (9.76)
p

Note that the missing electron alters two site;: H(l) means a
missing electron on site 1, Ng(2) means that site ‘2 is neutral but
not valence-bonded and thus has a free spin a = :1: %. The sum runs
over all permutations of sites, and ¢’ (P) are variational.

Actually, the starting hypothesis has been overstated and can
be weakened. In the pure undoped case, LayCuOy may have a Ne‘el
ground state (strongly assisted by weak 34 interplanar spin
coupling). Beyond a critical doping level (e.g. a few percent Sr,
Ba. or Ca atoms in place of La) the Neel state disappears. The
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hypothesis says that states like (9.76) take over. It has not been
proved that such a state occurs in the large U, small x Hubbard
model. It may be necessary to admit some next-neighbor interactions
or some electron-phonon effects to stabilize the state (9.76).

It was pointed out by Kivelson, Rokhsar, and Sethna (KRS, [74])
that the state (9.76) can be thought of as embodying two
“topological defects” (or solitons): A site of charge +|e| which
behaves like a Boson, and a neutral site of unpaired spin which
behaves like a Fermion. Although necessarily created together,
these two “particles” wander separately through the crystal. Their
statistical ~(Fermi/Bose) properties were explicitly  verified by
checking the sign of wavefunctions like (9.76) with two identical
defects present, as the locations of defects  were moved
adiabatically until they switched places.

At this point the scenaric of Anderson e al. [75,76] and of
KRS diverge from each other. In the latter picture the neutral
Fermions (“spinons”) have a finite creation energy (of order I or
t2/U) and thus are not present except as virtual pairs in the ground
state; a second hole added to the state (9.76) will bind to the
“spinon” creating a second charged Boson and leaving no Fermion
degrees of freedom. Superconductivity is then expected as a Bose
condensation of the charged Bosons.

The picture of Anderson involves a gapless spinon spectrum with
a ground state of N occupied spinon states and a spinon Fermi
surface. The nesting property of this “pseudo-Fermi surface”
accounts for the antiferromagnetism. Doping destroys the
antiferromagnetism but does not shrink the pseudo Fermi surface;
charged Bosons are added which Bose condense. The superconducting
transiticn is supposed to be a pairing transition at still lower
temperature within the Bose condensate [77].

These scenarios are changing rapidly, as is the experimental
situation, so it is too early to perceive the shape intoc which the
final picture may evolve,

9.15. Oxygen Holes and Copper Spins

Various experiments suggest that carriers in Cu-O superconductors
are located primarily on oxygen atoms, rather than in hybridized
Cu(3d) Oxygen (2p) antibonding bands as suggested by band theory.
For example, Cu-K edge X-ray absorption (Is - 4p transitions) seems
to give a clear fingerprint of the valence state of Cu. Tranquada
[78] find that pure LayCuOy has the fingerprint of the Cu2+ 3d%)
ion, and does not evolve toward Cu’* as carriers are introduced by
St doping (Lay.,Sr,Cu0; with 0=xx<0.2). The oxygen 1ls to 2p
transitions have been explored by Niicker er al. {79] using electron

enarmy Inon  cmanbon oo e
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spectra seem to show a filled O(2p)-shell for values of x,y in the
insulating region, but holes in this shell, roughly .pmpomcnal to
x and y, for conducting samples. This leads to the view that the Cu
sublattice temains insulating with s = % Cu(d® correla?mns even in
samples which are metallic. Long range anti.ferromagneuc (AF) (_nrder
is lost, short range spin order of some kind is presumed-m remain,
Two interesting models have been proposed vwhmh treat. Athe
oxygen holes as a conventional Fermi liquid a*‘md achieve BCS pairing
by an attractive interaction caused by Cu spins. Both models, l}ke
the “spin-bag” model mentioned in Sec. 9.10, demye the attraction
from the fact that the oxygen hole alters the magnetic energy of the
Cu sublattice in such a way that it is preferable to bunch t.he
carriers spatially.  The specific mechanisms, however, are quite
ifferent. ‘
daite ;irgeneau, Kastner, and Aharony (EKA., [80D) require that
superconducting samples should exhibit ﬂuctuatzng AF orf;isr‘ w1th“ a
correlation length of several planar Cu-Cu spacings; this is quite
different in principle from the RVB spin orgamzauox"x,abut‘avallable
neutron scattering data [81] do not seem to distinguish these
pictures unambiguocusly., The BKA model says that &he. oxygen hole
(carrying s = %) tends strongly to orient its two nc?xghbormg Cu
spins into a § = 3/2 ferromagnetic cluster. (Se.ch Fig. 2a). A
second such cluster of opposite § will then prefer to bg close
because the pair of clusters is less disruptive to fluctuating AF
order than either one individually. The source of the fermmag.netlc
alignment energy of Fig. 2a is Hund’s rule energy (from ordinary

@ ® X O

®C0
(b) @Cp ) Fig. 92. A Cu-O-Cu group in the

Cu0,;  plane, showing  possible

@ % @ arrangements of the spin of 8
hole on oxygen coupling to its

two Cu neighbor spins. (a) model

of Birgeneau, Kastner and Aharony

® O (1988); (b) model of Emery and

Reiter (1988); (¢} possible sites
(e O <D O @ ® of oxygen holes denocted by x

which experience attraction due
O O to enhanced superexchange.
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Coulomb exchange energy) which dominates over AF exchange (%/U
effects) because the oxygen hole is assumed to lie in a py-orbital
(where x is the Cu-O-Cu bond axis and %-y is the CuO; plane). This
orbital is orthogonal to Cu (dx2.42) and the hopping matrix element
t vanishes by symmetry. The py-orbital is assigned the highest
energy based on an electrostatic calculation. (See also Guo er al.,
[82)).

Emery and Reiter (ER, [83]) assign the oxygen hole to the p,-
orbital (see Fig. 2b) which is favored by antibonding covalency as
in band theory. Then one expects an antiferromagnetic interaction
' between Cu spins and O spins, which should be larger than the
previous Cu-Cu coupling J. Spin configurations shown in Fig. 2b are
expected for a Cu-O-Cu complex, dominated by the 444 state where Cu
atoms are ferromagnetically arranged. Just as in the BKA model,
this complex disrupts local AF order. A second such complex,
dominantly 444, would be attracted in order to minimize the
disruption to AF energy. However, ER identify a separate mechanism
which causes attraction and makes no specific demand on the nature
of the fluctuating magnetic order. The 2d s = % Heisenberg
antiferromagnet is apparently a marginal case, so theory provides
little guidance as to the type of magnetic order expected in doped
weakly 3d systems, and the ER theory is safer for making fewer
assumptions. Their new mechanism is “enhanced superexchange”. The
Cu-Cu exchange J is only partly given by t2/U, because the hopping
parameter t to go from Cu to Cu is small, Instead, the principal
route is to hop indirectly via the intervening oxygen ion using a
larger matrix element t'. But then the process is fourth order, and
complicated expressions result, such as

, t’ 4 2 4
Jow -ﬁ(qu_v) [_0:1 + MUI,+2;:;] .77
where ¢, is the O(2p) upper valence orbital energy, relative to the
copper &g orbital energy chosen to be zero; U, and U, are onsite
(Hubbard) Coulomb repulsions on O and Cu respectively, and V is a
first neighbor Coulomb repulsion (“extended” Hubbard model). Now
suppose that there is an oxygen 2p hole on one of the six oxygens
adjacent to one (but not both) of the copper atoms in question (see
Fig. 2¢). Then by the nearest neighbor repulsion V, this raises the
energy &g of a Cu-hole and correspondingly diminishes some of the
denominators in Eq. (9.77). If a second O(2p) hole occurs in
another of the six atoms (see Fig. 2c¢), this will further diminish
denominators in (9.76). The effect is bigger than the additive
energy changes of two single oxygen satellite holes, and causes
attraction of oxygen holes located at second neighbor sites. For
reasons mentioned before, this interaction ic more ~ffantive  £o-
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9.16. Postscript

In the last few months there has been an inzerest%ng cgntrovers;;
concerning the statistics (i.e. the l?ehz.szr under Rg}tg:rct ;znge) T;:e
charge-carrying and spin-carrying excitations of the state.
situation is summarized in table IL

Authors Ref holon spinon

KRS 74 + -

KL 84 +i +1i

HL; RC 86,87 - +

K 88 + ?

Table 1I Phase change ci¢ of the RVB wavefunction after

interchange of two identical quasiparticles.

As mentioned in sec. 9.14, Kivelson, Rokhsar, and Sethna (KR§ [(’174])
were the first to notice that spin and chargew degr;’ees of f?eBom
were likely to decouple in an RVB state. Thelr_ a531gr1ment (; _o;e
statistics to § = 0, q = [e “holons” and Fermi. statistics to —b %,
q = 0 “spinons” agrees with naive expectations, but has ecg
challenged. Kalmeyer and Laughlin (XL [84]) have _propose
“fractional” statistics, which can be constructed in two dlmens;ggs
[85]. Haldane and Levine (HL) [86] ‘and R§ad and Chakraborty IéRS)
[87] have argued for Bose and Fermi, b1.1t in reverse order to Hé
Finally, Kivelson (K) [88] has recxammed. these arguments.d e
agrees with HL and RC when the hole hopping term is ignored, bu
finds that the holon turns back into a bo§on once it is given a
reasonable hopping matrix element. The spinon can go e}thcr fwilg.
This controversy seems to have sharpeneq the understandn%g of the
meaning of statistics in two dimen§10ns. ‘ fI‘.h?ee dlmden:smn;
apparently is different and lacks the rich .p‘ossxblhnes fouq in :
= 2. Kivelson’s [88] argument also clarifies the §ubtle issue ©
flux quantization in uvnits of h/2e even when the object condenm?rg
is a charge |e| boson re;li}};er than charge -2¢ Cooper pair.
iments clearly indicates . . _
EXPCKIEG cxperiricntal discovery {891 worth noting is

superconductivity at T, ~ 30K in the system Bao,éKo_,;BiQ_;. Like ﬂ.ue
RalPhs Ri D> svstem  thit it an annroximatelv cubic perovskite
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with a metal-insulator transition but no sign of local magnetic

moments.

The lack of g unifying theory for these diverse but

evidently related high 7, systems is an embarrassment. Tt is safe
0 say that the discovery of high 7, superconductors has already
altered our view of physics, and that thig process will continue,
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