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ABSTRACT

A general theory is given of the anisotropy of the energy gap
and the resulting transition temperature (T ) enhancement of pure
superconductors. The frequency dependence of the gap A(k,w) is
approximated by the two square well form of McMillan, but otherwise
an exact algebraic solution of the strong-coupling Eliashberg
equations is given, valid for arbitrarily large anisotropy. In the
limit of weak anisotropy a simple perturbative formula is also
derived. The method of solution relies on the use of expansion
functions called Fermi surface harmonics (FSH's) which are velocity
polynomials orthonormalized on the Fermi surface. Methods for
explicit canstruction of these functions are described. As an appli-
cation of these techniques the mass enhancement and gap anisotropy
are calculated for Nb, in an approximation which includes all
electronic anisotropy but neglects the contribution to the anisotropy
which arises from phonons. The rms gap anisotropy in this model is
6% which is not inconsistent with most of the current experimental )
data. The resulting Tc enhancement is predicted to be 0.7% or .06°K.
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1. INTRODUCTION

Microscopic theoryl’z’3 gives a four-dimensional integral
equation for the energy gap Ak,w). Experiments such as tunneling
are especially good at probing the dependence of A on the external
frequency w (given by voltage eV in tunneling) , and can also yield
information about the variation of A as k varies on the Fermi
surface. To make theoretical calculations possible it is helpful
to approximate the four dimensional integral equation by a lower
dimensional equation. The usual procedure is to replace ‘A(k,w) by

an average value Ao(w)

A, W) _i PAG, )8 () (1
Vv o= E 6(€k (2)

which is the isotropic average of A(k,w) over the Fermi surface.
In these equations k is shorthand for wavevector K, band index n,
and spin g. Thus the density of states at the Fermi surface, Vv,

is for both spin orientations.

Most of our current understanding of the interactions and thus
transition temperature (T¢) of superconductors derives from such an
isotropically averaged theory. In particular, McMillan's inversion
program4 and T equation5 both make this approximation.

An excellent justification for the isotropic approximation

exists in dirty superconductors where impurity scattering causes the
actual gap to be isotropically averagedé. However, it has long been
known that in situations where A(k,w) has a significant variation on
the Fermi surface, T is higher than in the dirty or isotropic limit.
The earliest theoretical model of this was the two band model pro-
posed by Suhl et gl;7 and by Moskalenko8, in which the Fermi surface
is presumed to fave two unrelated pieces and the gap is allowed to
take a different value on each piece. The case of more general
anisotropy has been treated in the weak coupling and weak anisotropy
approximation by many authors, perhaps first by Pokrovskiif. The
exactly soluble model of a separable potential was introduced and
solved as a function of impurity scattering by Markowitz and
Kadanofflo, Tsunetoll, and Caroli et al.’ Numerous other authors

have extended this theory13“15.

Motivated by the conjecture that anisotropy enhancement might
contribute significantly to the T, of high temperature supercon-
ductors, we have reexamined the theory of anisotropic superconductors
without making the weak coupling or weak anisotropy approximations.
Similar work has been reported by other authorsl®>17 but we believe
to have found an approach which is particularly simple and general,

and well adapted for both analytic arguments and numerical calcu-
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The plan of this paper is as follows. In Section IT the
Eliashberg equations are written in the FSH representation, and
a T. equation is found in the two-square well approximation. In
Secfion III, perturbation theory is used to simplify the Tc equation
in the limit of weak anisotropy. The relation between T _ €nhancemen
and rms gap anisotropy is given for strong-coupled superconductors
for the first time. In Section IV the equations of Section II are
examined in the two-band approximation, and the T_ equation of
Suhl et al’ is derived with strong-coupling corrections included.
In Section V we enumerate the low order Fermi surface harmonics for
Nb and explain how they are constructed. In Rection VI we show how
the quantities entering the equations of Section II can be obtained
from energy band calculations. In Section VIT the completeness of
the FSH's tested for Nb by explicit calculations of the expansion
coefficients of various components of the density matrix. Typicall
95% completeness has been achieved with an average of six functions
on each of the three sheets of Fermi surface. In Section VIII the
calculated coefficients of the anisotropic gap and mass enhancement
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a spin down electron from -k to -k'. The plasma frequency w o is
the natural cutoff of the Coulomb interaction. P

The equations of an isotropic or dirty,superconductor are
obtained from (5) and (6) by assuming that JF(Q) is diagonal in
JJ'. Th‘a guarantees that AJ ,(w) is diagonal because of the
relation CJJ' = Ogqr- In %his approximation equation (5) becomes
a set of uncoup?ed equations, one for each value of J, with the J=0
equation Eeing eq. (2) of McMillan's pap%r‘. The usual parameters
A,u and o F are identified A, u ., a “F. The effect of impurities
is to introduce a strong repafsivgoter%owhich will drastically reduce
or eliminate all coupling constants except for the J=0, J'=0
component where thg impurity term is absent in accordance with
Anderson's theorem’.

In an attempt to solve these equations, we now follow McMillanS 3
in making the two-square-well approximation,

Aj(0)  if |w] < Woh
Ay(wy = A VTGO NE S SR |m|<ijl
0 otherwise
Mgy if  jw] < Oon
Arsy(w) = ;
JI! \ 0 otherwise (10) j

where w . is the maximum phonon energy and AJ(0), AJ(W) are assumed
real. ?Re kernel K(w,w',R) of eqs. (5) and (6) is given by

o) + N@) (11),5

g+ N(@)
w-w' -0

w-w' +

K(w,w',) =

Observing that |Q| is confined to frequencies less than w,, we make
the approximation that K is zero unless both |o| and |w'f are less
than w h Then using these approximations, we evaluate eq. (5) at
w=0 and  w=» (actually w £ O is meant rather than ) to get self-
consistent equations for AJ(B% and AJ(w),
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21 .
allowed in this model. However, it has ?150 been ihow? tgat tb;s
model is highly accurate for materials with A < 1.5, Fh?ret9ri i
the present paper, we work in the two square-well approximation.

Equations (12), (13), and (16) are now easily solved to find
T . First we solve (13) for A(®),
c

By() = - i}ncl.xsswph)ww,AJ.(01 (19)
where the matrix y* is related to ¥ by
v Y
e In (/) . (20)
FoRTR pLTph?t 4
Then we use (18) to eliminate A(®) from (12), giving
j : = (Q-u") 21)
Sl By )t A0 = () A0 (
p(% Q & § v vV
where we have defined
— ¥ * (22]
éﬁ* = in (wph/wlog)§
(23)

1/0 = 13(1.13Gw10g)

Equation (21) is the final equation which determ?nes the aniiggiigic
zero frequency gap A(k,0) at T = ch This equation has zonl,t vial
solutions A # 0 only for discrete elgenvglues e The ac ugh. i ns
ition temperature corresponds to the maximum eigenvalue p whic

denote Xeff‘
=1/X

= ff
TC 1.13w10g e e

(24)

-1
» = i - 8A + fur) T (QA-pF) (25)
off = Max. Eigenvalue of (é + Q é % Q %
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Equations (24) and (25) are the T equation we have been seeking.
They take full account of strong coupling corrections and are valid
for arbitrarily large anisotropy. However, the use of the two
square-well model limits their validity tglmatcrials with A < 1.5.
Furthermore, detailed numerical solutions®" in the isotropic approx-
imation suggest that the prefactor 1.13 should be replaced by 1/1.20.

In terms of practical applications, it may appear disturbing
that eq. (25) involves a large number of microscopic coupling
constants, namely five matrices &, * Qs 6%, and Sy*. However,
things are not as complicated as™“théy m¥y seem. For example, the
matrix Su* is proportional to u*.  The upper left hand element,

u*o = P¥is of order 0.1, and The other elements in all likelihood
are considerably smaller (and therefore negligible). The matrix

§) has a vanishing upper left element. The other e;ements are non-
vanishing only to the extent that the shape of o, ,“F(Q) differs

from the shape of a”F(Q). Each element of §) is“3mall compared to

the corresponding element of ) and therefore} in all likelihood,

also negligible. The Matrix § has elements which can all be expressed
in terms of the elements of tWe matrix § and the Clebsh-Gordan co-
efficients. These can be calculated if’a reliable Fermi surface

is known, and most of the important Clebsh-Gordan coefficients are
either 0 or 1. Thus E? a good approximation we seek the maximum
eigenvalue of (1 + oy (%%~ u* 6J0610,) which involves only one

matrix of coupl%ng Tonstdnts A . " Group theory has been used in
constructing the functions F (ﬂ{. This has the helpful consequence
that all five matrices are block-diagonal, i.e. the only non-vanishing
off-diagonal elements are those connecting functions which belong to
the same row of the same irreducible representation. In cubic
symmetry, there are ten irreducible representatio?s, and a total of
twenty rows. Thus the matrix (] + % -G+ 6&*)_ Q@ - U*) consists

of twenty submatrices, i.e. a T% submatrix which defermfnes the s-
wave transition temperature, three (identical appearing) T sub-
matrices corresponding to the three rows of the I'.. represéitation
which determine the p-wave transition temperature,and so forth.
Ordinarily we expect the s—wavsstransition temperature to be highest,
although it has been suggested”” that because u* may be small in the
p-wave channel, some metals with small values of X may have p-wave
instabilities at very low temperatures. At any rate, the problem of
determining the s-wave transition temperature involves examining only
the Fl submatrix, which in favorable cases can probably be accurately
represented with a fairly small number of terms.

Finally it is important to note that the matrices ) and A de -
scribe material properties relevant in other problems beside " super-
conductivity. For example, the low temperature normal state specific
heat is enhanced by 1 + Ayp = 1 + A. The high temperature electrical
resistance is determined by the p-wave submatrix?0 of %— . Thus the
zoo of new coefficients introduced here is by no means so large and
arbitrary as may at first sight appear.



82 W.H. BUTLER AND P.B. ALLEN

IIT. THE LIMIT OF WEAK ANISOTROPY

In the previous section we have derived equations for the
anisotropic gap parameter and the transition temperature. We
repeat here a simplified version of these equation

R I R (26)

To = (0),,/1:2) oxp (A 2gee) - (27

We have neglected the small matrices 6&, Su*, and introduced an
empirical adjustment of the prefactor.” These equations have the
same fgrm in any orthonormal basis set. In particular, Entel and
Peter ' have recently presented these equations, working in the
"locally constant' representation - that is, their orthonormal
functions are constants in isolated (i.e. non-overlapping) regions
and zero elsewhere. Clearly such functions can be normalized so as
to satisfy the condition (1). However, the FSH basis set has several
advantages over that of Entel and Peter, one being that the equations
take a simple form if the anisotropy is weak. Specifically, the
matrices Q, , and p* become nearly diagonal, and the maximum eigen~
value is ~clusely a%proxiamted by the upper left hand term, i.e.

Aogp(iso) (1 + 0 = A-ur
TC(iSO) = (wlog/l-Z) exp(-(1 + N/(A - u)). (28)

Apart from small adjustments, this is the familiar McMillan equation{
If the anisotropy is not too strong, it is a simple matter to find
corrections to the isotropic equation by perturbation theory, and also
to find the gap anisotropy perturbatively. These tasks would be
harder in alternative basis sets such as that of Entel and Peter.

Equation (26) allows us to calculate the gap anisotropy only at
T = T where A is vanishingly small. At lower temperatures where A
is no longer negligibly small, non-linear terms occur in the original
integral equation which determine the magnitude of A.Thenonn]inearalﬂy
consists of putting the J' component of Re[A//0TZA%] in place of
Re[AJ,l/m' in eq. (5). If we make the approximation

[A/ VT Z'I'ET]J, o AJ,/J(»"Z—'A;T (29)
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A(k,0) = A J1 + £ (A_/AFE
s 2 F
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Aeff = (A - w1+ A + axeff (31)
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: umed small i i
respectively. Iii"the weak coupling 1;;?Ea£§grglth topor (is0)

relative to e . is negle%ﬁfd
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A1l
. (%Jé)oll \
b - L Jog
[o) ()\_ * - - v *
G
(J # 0, weak coupling)
s Qe
Degr = 740 vy v apo J0r?
VT T el e (32)
AR oo T TR g A= )

(weak coupling)

The approxi N i i

onty gﬁ 3;;Zitie£§1?s on the ?1ghF invoke the assumption that u* has

pprocimarrer left erm ¥ which is non-zero. The weak anisotgo
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o = JRESTTESY [

- 1k (AJ/AO)ZI1é (53)

where the last expression is a general Formula derived from eq. (1),
and the angular brackets < > are used to denote a Fermi surface
average,

_ -1z
SV Ty bké (ak). (38

<Pl

In the weak coupling approximation (where Xeff = A-p*) we find from
(32) and (33) )

A

A pe ST /T (150) (35

2 - =
of = e/ Mopr

This result has been derived many times, usually within the
factorizable interaction model*" ~<, and is derived here for weak
coupling and weak anisotropy (but with no restriction as to the fomm
of the anisotropic interactions). This result shows that the
fractional T enhancement due to anisotropy scales as the square of
the rms gap anisotropy. Thus a 10% gap anisotropy (as is commonly
seen by tunneling in s-p metals) gives a T enhancement of order
1%. The actual size of the factional T erlhancement is larger for
low TC materialszghere A is small. or example, the alloy data
of Fa¥rell et al for Z1, a weak coupling material @ v 0.20),
indicate a T _ enhancement of 20%; eq. (35) then implies a 20% rms
gap anisotropy.

Let us now derive the strong coupling corrections to eds. (32)
and (35). If we made the assumption that the renormalization matrix
(% + Q) were diagonal and equal to (1L + A) 4 (as it is in the isotro-
prc 1¥mit) then the derivation would be simyle. Each term A It and
WF gy of eq. (32) would simply be renormalized (i.e. reduced{ by a
fattor (1 + \) leaving the gap anisotropy AJ/A unaffected, and
reducing SAeF by (L + A). The form of eq. (Sg) would be unaltered
(because thé gormula for A is altered to (A-u*)/(1+X). However,
not all of these conclusions are correct, because the renormalization

has anisotropic corrections which need to be handled in the same
Vorder of approximation as the anisotropic corrections to A. The
derivations are somewhat tricky and are given below, but the final
results are gratifyingly simple:
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o Led 7 (A=u%) - =) oy R EEO) o
(J#0, strong coupling)
Shpe = [%H}i*)sz [hgg v oy (1A / (L4u¥) )2
(L2 g0 A=) = (A-1%)
2 2
X (i+u* EEELN Oy £1+U*)2 2
(1+2) J#0 AuF v (TR S ARy [< )\k >- R (36)

(strong coupling, weak anisotropy)

The | . .
Calculateéaiﬁ form of eq. (36) is written in a form which can be
in a conventional way without the use of Fermi surface

harmonics. ~ The function is he SS € T T
! . on A . .
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- i i
M= ks UMga 1270 400 8 )

=3 Ay Fy0
“ tos RIS (36a)

2
Tl se) =LA 2
X J oJ - (36b)
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: 0pLC superconductor. Thus we can rewrite eq. (35)
. (35),

8T /T (is0) = uzln(mlog/l.ZTc(iso)). (37)
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This formula has been derived allowing for strong coupling provided
% < 1.5 and arbitrary from of (weak) anisotropy. A few additional
comments should be made about these perturbative results. We see
that anisotropy always increases T . This was well known for the
weak coupling case ignoring CoulomB repulsion, but is less obvious
in the general case. In particular, suppose the electron-phonon
interaction is isotropic but the Coulomb interaction is not. Then
the gap will be locally depressed at values of k where the Coulomb
coupling strength is strong and enhanced where it is weak. This
gives rise to a T enhancement that is just as strong as if the
signs were reverséd and it had been the phonon interaction which was
anisotropic. If Coulomb and phonon interactions have the same type
of anisotropy, cancellations occur which weaken the gap anisotropy
and the resulting T enhancement. The role of Coulomb and phonon
interactions is not completely parallel in this problem (i.e. note
the factor (1+)\)/(l+u*) which strengthens the role of Coulomb
anisotropy in eqs. (36). The reason for the lack of parallelism is
that Coulomb effects do not occur in the renormalization matrix

_+ A . Tt is assumed that Coulomb alterations of the normal metal
”spe@trum are included in the band structure €& .

The rest of this section gives an outline of the somewhat tedious
derivation of eqs. (36). We seek the maximum eigenvalue and the
corresponding right eigenvector of the matrix (1+A)'1(X—yﬁ. Although
the matrices involved are all individually symmet?ic, ¥ product
of two symmetric matrices is no longer symmetric, and this gives
rise to an important alteration in the algebra. The matrix
becomes M in the isotropic limit. Thus it is convenient to make
some chanPes in notation

POAZ N Y (7
"N LY N

2o

N \ v

-1 _ 0 1 2
@4« (Q-g):v&“w“w“*--- (38)
v

We now seek the maximum eigenvalue and corresponding right eigenvector
of the matrix B which differs from (L* y-1(j-p*) by the constant
factor (1+A)~! . Factoring out (1+}) ~ddes M6 affect eigenvectors of
%, but we must remember when we are all through to divide the eigen-
alue by &1+A). The matrix elements of A and the off-diagonal ele-
ments of 2 and y* all vanish in the isotropic limit and are therefor
the small™parameters of our perturbation theory. The matrix B is
then expanded in powers of these small terms. The leading te¥m, (3
is diaéonal, and the first and second order terms are denoted B
and %( ). The formulas of the Rayleigh-Ritz perturbation seri¥s are
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(D), (0
Ay/hg = Bjo /(B(E()) - ng)) (J#0) (39)

. -1 €8] (2 r
6xeff (1+1) {Boo " Boo) * J#0 Bé}) Bgé)/(ng)“ngb}

(40)

where it is important to remember that B and B are not identical

We can construct the matrix (l+ }“1 perturbati {O i
il ive and £
necessary formulas for the elém%nts of B y fnd the
N

E:%_%*% - ) (Q~¥*)

BJ(E) =@ - Ky

D -

B(E? = - Jio [YOJ%”%)JO “VOJYJO%'EQ*)OO]
B((I)L)T ) (% i ’1%6*)0-1 " Yogt - W gy

1y _
Biyo = (0 = Wg0 = Yyl = W,

(41)
Finally, we need the fi 1 =
ormula for Y50 = Yor°
Yog = (N T = )T D Cpr
50 0300
=g+
JO (42)

ghere we haye used the definition (8) of A%i' and the fact that
oIy = . Combining eqs. (39), (41) 2), w i

PR ig . N - , . 2), we easily get the
o (36) for the eigenvector AJ/Ag.buDer1v1ng the formula (36)

Leg 1S similarly straightf i i
o Ff ghtforwar t involves C -
cellation of the terms in eq. (40). @ delicate con
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IV. THE TWO BAND MODEL

In this section we §p§cialize the results of section IT to the

case of a two band model’’>”. This model is exact if the interaction
V=

Vph(k,k ) ‘Mkk" /hwk"k‘ has the form

Vph(k,k-) = azg va Sku 51('8 (43)

s

where V__ are arbitrary positive numbers, a,8 run over two sheets of
Fermi s%%face (which we label a and b), and the delta's 6ka’ Skb are
1 if k is on sheet a, b respectively, and zero otherwise. ~The
reason for exhibiting this case explicitly are: first, it is the
simplest example of the application of our equations to a situation
of some intrinsic interest; and second, we can anticipate in a
simple context some of the complexities that will arise when we
apply these methods to an actual Fermi surface, that of Nb, which
has many different sheets.

Within the two band model, the only band structure information
required besides the interaction parameters VdB is the partial
densities of states Yy

vy = ]z( 8o ey (44)

where the total density of states v equals v+ V. As described in
ref. 20, one way to constrict Fermi surface harmonics is to construct
two different sets, FJ and FJ ,each of which vanishes on the opposite
sheet. Thus F is au%omatica?ly orthogonal to FJ, for all J and J'.
With the two-bafd potential (43), it is only neceSsary to keep the
constant function on each sheet, and we denote them F_ and F_. Using
the orthonormality relation (3), we get explicit formulas for the
normalized FSH's

F, = AV, Sy = |a>
Fb = /v/vb ﬁkb': |b> (45)

The ) matrix has elements defined in eq. (7) which can be written
using an inner product notation

A= v<a]vkk,lﬁ> =

oB vuvB VaB ' (46)

GAP ANISOTROPY AND Tc ENHANCEMENT 89
In the weak-coupling approximation with Coul i
; i oulomb coupling i

(Whlc? is Fhe model solved by Suhl et al’), T is dgteriiiggoged

eq. (27) with A the maximum eigefiValue of fhe 2x2 i " his
a. @n. ,ef§ e matrix A. This
g ) answet Tound by Suhl et al’. We now examine the strong-
coupling corrections. - ¢

The fgnctions (45) differ slightly from the choice of FSH's
qescrlbed 1n.section I and implicitly used up to now. The diffe
is that p?ev10usly we have assumed that there was a %unction ﬁ ‘Tence
whfreas with two distinct sheets it is more natural to use the ~h"
45). Uowever, it is still possible to revert back to our form: oree
convention by making a unitary transformation, and there aré ceriai
igxizzifjs to ?9;§g so. The advantages are that the previéus choicg

simplifies to a 1x1 problem in the is i imi

?he present chqice remains 2x2. (The isotropico§§$§ichi;2l§; zgiziisd
if v g = Y.) In the case of weak anisotropy it is much easier to(d °
pgrturba?lon theory in the former picture. However, the pfesent °
Elcture is more natural for doing calculatiog' of tﬂe coefficients
These two pictures have been given the names g symmetric (Sj;(for».

the previous one) and disjoi : o3 .
equations ) isjoint (D) representation. The transformation

fcos® sind
v t—sine cosf

R T ,
® = tan ngyva’ cos8 = N /v, sind = Vbb/v

; -1
Woyn = 8 Waisy ¥ n

i:gize atug?tary transformation from the disjoint to the symmetric
sentation. i i ‘
Note that FO is 1 as required, and Fu orthogonal to

F
0

Struciggﬁhe; aﬁvantag§ of Fhe symmetric representation is that con-
r of the matrix Q is conceptually somewhat simpler. A rigorous

tion of A in v oany T Y < q
¢ I'no 1 et) is e 8
defin o) J%' 4 ny ortho rmal basis s . )

A, o= vt ; \
JJ! Y ki' FJ(k)FJ'(k)Vph(k’k )GCQk)(S(Ek') an
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5 definitio
where F. and F_, both have the argument k. Now Vph has by de n

the expansion

-1z ' (48)
Vph(k,k') =V g5 A F (K F (K )
We also define coefficients CJJ,J” and GJ by
= 49
vl s E 00, (OF (K088 = Cppug (49)
X J
} = (50)
vz F 08 = 6
k
Using eqs. (48-50), eq. (47) becomes
. (51
A]‘Jl = J;JHV CJJ'J‘IGJVV\ }\JHJIVI )

i i d we recover eq. (B)
e vaia 5 representazl9n’rzﬁrzzzii;tggg 221y In the disjoint
which is valid in the symmetric repre o 1 ¢ isjo
i j s 0 are less simple, namely
tation, however, the coefficients T
gepfeisn/i %hus the &ore complicated equation (il) mus;tpe used.
is codplicati i he simplicity of the resulting
tion is offset by t P ult
?ﬁ;;uizgpé;;aA The only non-zero Clebsh-Gordon coefficients are
] 8"

of the type C 08 . A&7V, which implies that A is diagonal in the
disjoint repr%sentationuof the 2-band model,

v (52)
= X A
(AaB)disj SuB i Gi oy
-1 (53)

(%gsym N & (Qdisj) %

. ioint
We can now solve for T in either r&.zpre§entat‘xon.Y The d;sizéz

representation proves, simplér because Q is d1agonal.~ We c?ne 2f

(i + A) into [[& + &)é] and then seek™the maximum eigenvall

V] "yj) N n
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1
-4

¥ ap gy

"y LAVERAV)
M ogddisy = PogWag) /YO T EE) (54)
The final formula for Xeff is
hoge = 200 wan sy o/ s s 312 s
eff 2 aa bb 2 aa bb ab”
(55)

We believe that this is the first time the complete solution of the
strongly coupled two-band mcdelzgas been given. A correct result was
given by Geilikman and Masharov®’, except they have folded the renorm-
alization A into the coupling constant X, and have not provided the
connection (52) between the mass renormalization and the coupling
constant matrix.

V. CONSTRUCTING FERMI SURFACE HARMONICS

There are two parts to the problem of constructing FSH's: first,
enumerating a maximal set of linearly independent polynomials of a
given symmetry type, and second, orthogonalizing them. Both of these
involve standard mathematical procedures, but it seems appropriate
to give a summary of the procedures we have found useful.

First we work out the case where there is a single sheet of
Fermi surface. It does not matter whether this sheet is open as
in the Fermi surface of Cu or the "jungle-gym'" of Nb, or closed as
the "jack" of Nb; the form of the functions is the same. The task
is to construct orthonormal polynomials starting with zeroth order
and increasing in order until convergence is obtained for the problem
at hand. In Nth order there are in general (N +1)(N +2)/2 linearly
independent functions of the form v_%v_"v n with %,m,n > 0 and
2+ m + n=N. The operation R of thd pgin% groug G of the crystal
transforms points in k space into new points R™‘k. When the
operations R are performed on the polynomials, they will transform
into other polynomials of the same order. A trivial example is the
zero order polynomial, 1, which is invariant under all operations R,
and thus transforms according to the identity representation I'., of G.
The first order polynomials are the three components of the veiocity.
The velocity vector ¥ transforms into —1] = D(R)X sand the matrices
& (R) form a represen%ation of the group G.¢ Fo¥ cubic symmetry this
1s the irreducible representation I'.. (in the notation of Bouchaert,
Smoluchowski, and Wigner?8). For 10Wer symmetry the representation
T thus defined is a reducible representation.
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From now on we will assume the crystal has cubic symmetry. The

four functions (1, v, v,, V ) so far discussed are automatically
orthogonal because tﬁey geloﬁg either to different representations
or to different rows of the same irreducible representation. Normal-
izing the functions is easy: 1 is already normalized by the def-
initions (3), and is given the pame Fo. The remaining ;hree are
normalized by dividing by <v 233 = (4<y?>)% where <v®>7 is the rms
Fermi velocity. These functXons ar namgd B, F., F . In second
order there are six polynomials, v =, V.5 V 2, %,V f V.V ,V V..
These form a reducible six-dimensidnal %epreéenta%ign oF & “1f is
clear that in cubic symmetry the first three do not mix with the
other three, so the representation can be immediately reduced to
two three-dimensional representations. The general process of
reduction is illustrated in Table I, where the character table of
the cubic group is given. Only even representations and proper
rotations are displayed explicitly. It is all that is necessary
because in the examples worked below, it is always obvious whether
the representations are even or odd. The characters (traces) of
the 6%6 matrices for the second order polynomials are easily worked
out and are displayed in the row 1abled T in Table I. Using the
orthogonality relation for characters, it is found that Fvv reduces
to F1 + Pl + Tz ,. Thus the three functions v v , V.V, V v, are
basis func%ians %gr thﬁ irrdeucible representatlox sz, whife the
functions v v v * can bg further reduced to T Pro. It is

. s Vypr Vg poan b further Y.
also clear that Y2 =% ¢+ v ° + v “ is a totally sgmmetr}c ()
fungtion, and T functions Lan ea%ily be found (v = - Vv~ and1

3v _ v are cofiventional choices, but there is nd ruleythat specifies

aZpriori which linear combinations or signs should be chosen. Once

a2 cholce has been made, howevex, the higher order Fl functions are
constrained except for signs.). 0f the six .new gunc ions, five are
automatically orthogonal to the lower ones but v~ is mnot orthogonal
to F_. Our specific conventions and proceduces for doing the

orthogonalization will be discussed below.

The reduction of higher order functions proceeds in a similar
fashion. The results of the character analysis for N=3, 4 and 6 are
in Table I.|The explicit construction of linearly independent functions
with the proper transformation properties can usually be accomplished
by intuition assisted by simple rules, but projection operator tech-
niques are also available if intuition fails. Usually only the Fl
and T,. representations will be of interest (for use in supercondic-
tivity and transport, vespectively). There are two I'._ sets in third
order. One is trivial - the product of th% firs% orde; T15 Sunctions
and the second order T fun%tion namely vV, V'V, v, The
other is a new set, v 3, v =5 ¥ Similarly the %oHrth oEder T
functions are trivialxones¥ (V2§2, and a new one, v_ + Vv _~ +V 4
If we stop at fourth order, we have a total of four™T fulctions
which we can put into orthonormal form, and group thedry assures us
that there are no more to be found without going to higher order.
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The next T'. functions are sixth order. The intuitive wethod
suggests four basis functiong, two,"old 8nes”, v, aad ¥Z(V RV
v, ), and two 'new ones', Ve OV v, and v,V VZ'. oweve¥,
gfoup theory shows that only thred I, flnctions octur’in sixth order,
Tge“f?uf we4have iisted4are actEaliy &inearlyﬁdepengent, Eecause
W=ty T ev o Fy ) 6V VoV - 20v. vtV ). We

can choose™any three of these Fout fénctionsxas the maxifial linearly

independent” set.

ihe second example is a case where the Fermi surface has multiple
sheets which are related to each other by the symmetry operations of
the crystal. Specifically, Nb has surfaces at the N or (m/a) (110)
points., There are twelve half-surfaces or 6 whole surfaces in the
first Brillouin zone, and we refer to them as "potatoes' because of
their distorted ellipsoidal shape. Each potato individually has
orthorhombic symmetry, but the collection of six potatoes has full
cubic symmetry. Here we pretend no other sheets occur besides the
six potatoes. In actual application to Nb, the normalizations will
need to be altered because two additional sheets occur.

We now have six times as many linearly independent functions in
each order as we had before. For example in zeroth order we can
choose T to be vv/v_ on potato gt in the [110] direction and zero
elsewherg. Similarly there are fgnctions Fb’ F, Fd’ F , F_., corres-
ponding to potatoes b in the [110] directlon,c”c” in the f011]
direction, "d'" in the [011] direction, '‘e" in the [101], and '"f"
in the [101] direction. These six functions are clearly linearly
independent and orthonormal in the sense of edq. (3). Under the
operations R these functions transform into each other, forming
2 six-dimensional reducible representation. From Table I we see
that this reduces to T', + le + Tz ,. The I'; function will clearly
be F_=1= Jva/v (B ¥F +F +Fd+F +Ff) which'is totally symmetric.
The function Fa"Pb is clear?y SrtRogonal to F_ and along with its
partners FC~F s Fe-Ff, form the basis of the I',c representation.
Finally, FSrFGF 2F  and S(F,rR,)-F, from the fo T, partners.

In doing character analysis for multipy-sheeted Fermi surfaces,
it is not necessarily true that even polynomials will belong to
even representations. For example, if two sheet transform into each
other under inversion, then the constant polynomial which is 1 on
the first sheet, -1 on the second, is odd. This is not possible on
the Nb potatoes because each sheet transforms into itself under
inversion, and even or odd polynomials always belong to even or
odd representations respectively.

We need explicit formulas for the 3 linearly independent second
order ', polynomials on the potatoes. These are most simply found
by examining the subgroup that leaves a single potato invariant.
There are three orthogonal axes with C2 operations, in the [110],
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[110] and [001] directions res i
] ‘ i spectivgly for thg "a" potgt 5
pogdlngiY the p01ynom1%15 (v, + v )S, (v ~-v )5, andpv 7 Z;c ggire?-
?31?r OlS §?bgroup. Each of thele gene%atgs al fuﬁctidn éf Eﬁzants
b sfi ggtltO:: Zgzragz gﬁ it by the six operations which geﬁerates
: E a e,results in ph . 5 f A
v* Ee;erates a functions v_°(§ ,vab)+‘§ giz +2hu; f%réexagple)
Whiﬁce az zﬁ symmetry. We Have Eosen v& v2Keankd $VY§S +c§%3enir
¢ of ree independent I'. functions on 6otato *a¥ which to.
Fl functions on the full serfice. o penexate

This concludes the outline i i
indipendept functions is found. OﬁehggwtgitT?:émZiesgiozgdilnealy
foé iwed in othornormglizing them. We consider only the Pres ge
aglynéiiaihe élnearly independent functions in ordertstart;%gsxiiﬁt,
se ynomi sbo lowest degree.. The ordering of functions of the same
begause gz 2 chosen arbitrarily and must be clearly specified
independ;ntasiic;s t?e form of the function. We label the linearly
Independint s Tﬁis 2" d' Our task is to construct an orthonormal

1° By Is done by the usual Gram-Schmidt procedure

Bo= fl/norm]

Fy = [f2 N <F1rf2 >F1]/n01‘m2

F = [f - n=l
P S Y <Fy|f > F31/norm (56)

We find it convenient to keep track o the transformation t X
rm atr s

Fi = I T..f,

. j<i i3] (57)
N

.. = < £

i3 £ mj>. (58)

The matrix - iti i

et thexdgahs; ﬁoslth? dlagongl elements and zeros on every locatio

the oaine AAg 02 %helz 1slrelat1ve]y ea§y.to express T.. in terms of "

need ot knowléx Lo ver apsvof the original functiond’ Finally, we

cee pansion coefficients p, and Q._,of functi .

Cglza‘;ozs %(k,k'] in the FSH basis, ﬁe findJ"lTé more EO;OHS'p(k) on
ulate first in the non- i then trane

orthogonal basis of fi's and then transform
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PJ =1 Tji <filp>

= nom, <l Ty g (59)

Qg1
SA A

There are two reasons for doing all the calculations first in
the nonorthogonal basis and then transforming. One is that often
integrals like <f,|p> are interesting in their own right, or more
easily interpreted than the more abstract <F.|p>. The other reason
is that this enables us to do all the Fermi surface integrals
simultaneously. That is, our computer programs do Fermi surface
integrals such as <f,|£.> which are needed to construct orthonormal
functions, and at thé same time integrals such as <f.|p> are done
which are later used to find p,. After all the integrals are done,
a separate program is written which constructs the matrix T from the
coefficients Ajj and then constructs Py and Q- n

Finally, since Nb has three separate types of Fermi surface,
it is necessary to decide which representation to work in, disjoint
(D) or symmetric (S). There are several reasons for preferring the
D-representation in the numerical calculations. The most compelling
one is that our programs do integrals over the three types of surface
by somewhat different procedures and at different places in the
program. This makes it difficult to do integrations over functions
which are nomn-zero on more than one type of surface. When the cal-
culations are all done, it is desirable to transform to the S-
representation so that perturbation theory for weak anisotropy can
be used. For this purpose, only the constant functions need to be
in the S-representation - the functions derived from higher order
polynomials can be left untouched. Thus the matrix U which trans-
forms D > S is the unit matrix except for a 3%3 sub-block which
describes how the three constant functions transform. This sub-block
was chosen in the form

cos®  sinb cosd sinB sing
u=10 sing -cos¢
sin® -cos® cosd -cos sind

cosd = /v, sinb cos¢ = va7v , sin® sing = /GZ7U

FJ(S) = i' UJJv FJ|(D) (60)

where Vg is the partial density of states of the band a. The functiqﬁ
FT(D) are the form /v/vu de, (o = a,b,c). Applying the trans formation
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(60), the_first of the S fgnctions has the form £§, = 1, and is
the function we have previously labeled F _, a ko
0

) We have made no effort to calculate the p* matrix from first
principles. Therefore we make the simplest possible assﬁmptién;
namely tEat *is isotropic. This means that in the S~represénta%ion
we get ¥y, S)A= u* 6J06J, The matrix p*in the D-representation
can be found using the"InVerse of the tran¥formation (60) (equal to
the transpose of the unitary matrix U, namely (D) = H‘l %*(S)H.

o n Ny v,

VI. CALCULATION OF THE MATRIX XJJ‘ FROM FIRST PRINCIPLES BAND THEORY

In this section we show that if one ne i i

0 3 glects anisotropy arisin
from the‘phonons, tbe matrix kJ - can be obtained rather simply Froi
a sufflclently detailed energy band calculation. Let us define a new
matrix, nJJ, , by i

w0

T = 2 1
Nyye 2M é' Qe Q oy F()

Mgl e B 00 Bk 8(ey) 8(e, )

(61)

Nyy~ 1S a generalization of the i i i 5
7 ) quantity n introduced by McMillan
anﬁ Hopfleldgg, related to AJT’ through the identity ’ *

by M Q2

737 = Nyg J3° (62)

where the average square frequency, <Qz>?* . , 1s given by
Ju

3

2 -
<> o= { e Q ol F(Q)/{ d/Q of ;- F(D) (63)

For J = J" = 0 it is usuall i i
y a good approximation to replace <Q%>
2 : ; X .
b¥ <¥ > .where <Q*> is obtained by neglecting the frequency depenggnce
g aJ{, in Eq. (63). We shall assume < 02> Jg° 7 <Q%in the following
or a‘% J and J”. This has the effect of oml%ting the phonon con- k
tribution to the gap anisotropy.

Tbe computational advantage of working with n.,. as opposed to
Aio. is that n... may be writt i Fsi Jf
33 17 ay ritten in terms of single (rather than
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double) integrals over the Fermi surface. In addition m,;- depends
only upon the electronic structure of the system. The pﬁonons enter
AvJ, in this approximation only through the denominator M 02 .
Tﬁese simplifications result from the fact that the factor Mwin -
in Eq. (61) cancels against a similar factor coming from the ma%rix

elements,

Mik’ = Jd¥r b (0 éi_k’ Al wk(r)//ﬁwi“k . (64)

The matrix element contains electronic wave function wk(r), a phonon
polarization vector By -y @ potential gradient W, the ionic mass,
M, and phonon frequency wi .. It is difficult to calculate YV
accurately for a transition metal. We shall use the rigid muffin-
tin approximation of Gaspari and Gyorffy30"32 which seems to give
reasonable agreement with empirical values of n.

Substituting the matrix elements (63) into our expression (61)
for ny;. we obtain (using the completeness of the polarization
vectors)

ki‘ fdPr ST () 4 () U (r7) Pr - (x7) JV()

A

Nys°
S VV(rT) % FJ{k) FJ,[k ) 6(gk) G(Ek ) . (65)
One easily recognizes in (64) the Fermi-surface density matrix,
p(rr) = WD) Y () (o), (66)
and its expansion coefficient in FSH's,
P -
pylr,r?) = 3 i o (r,x7) Fy (67)
Thus, in terms of pJ(r,r’) we have
- 3 3.4 - - - . g -
Nyy- v fdir Jdr QJ(r,r ) pJ,(r o) W) - VV(rT) . (68)

The quantities p.(r,r”) must be ex] anded in coordinate space
q % P

cubic harmonics in order to make contact with quantities available
from band theory.
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a1 .
P(0T) = 5 DU W) 0 8ey)

1 )Q/"_Q/ t -
==3 % i &y et L
Vogogut 27pt” ) ooy (O Re(x) Ry-(x)
t A t”
X e Nn
Ky, (1) Ko (B7) 8(e)F5(K) (69)

where we have used the Bloch wave expansion

2

B = B 10 el (0 Ry(®) K (8) (70)

B (r) is a regular solution to the radial Schrodi i t
is a cubic harmonic of row u of irreducible repriggiiai?gitiogﬁdK%u
grbltal.quantum number %, and ¢t is an expansion coefficient which
is obtalngd.from an energy band calculation. It may Be noted thai
all quantities which enter (68) and (69) are available if é detailed
Fermi surface calculation has been performed. . e

Additional s mp1111cat:10115 can b . 4 X g the
n be achieved by e PlOLtin
cubic symmetzry of Nb. q tion 9 ont e r
Equati (6.) contains the Fermi surface

Ttt’ o - L g (:t (k £
PRI R T T R AV (71)

E%rns-wavergp:i?ondUCtitity we are only interested in the [ submatrix
777 is reason only FSH's with full cubic symmetry wi
i 1
considered in Eq. (71), and for this case one can showy?hat ¥t¥l L be

is diagonal in t and t” and also in u and p”, and independentlgfl’u’J

ut

tt”

1 .= TE
a2y = Taes,g 8

R
tt
L (72)

Substituting (72) and (71) into (69) we have

po(r,e) = % Tt LR () R,.(r7) L, (3,2

J pase M g (1) Ry~ (x7) Fop - (2,25 (73)
where

B (8,87 = 2 kb (8) K. (37

2 u e (E) - (78)
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The functions FER’ are listed in ref. 32.

At this point it is helpful to condense the notation slightly.
One can show that for most values of (2,27,t), TEQ’J is zero. In
fact for %,8” < 3 there are only 8 non-vanishing cdefficients for

a given value of J. Thus we write a for the set of indices (%,%7,t),

i.e.
Tt . =% (6 =1...8) (75)
[3'A0N BN | coe
The translation o <> (227t} can be found in Table 1T.
Using this notation (73) becomes
-~ o - A oa
pJ(r,r ) = i TJ Rl[r) RQ)(T ) Fd(r,r ) (76)
and (68) becomes
Mpgs = VI % 7 g (77)
JJ J "J7 ®aB
aB
where the coupling matrix is given by
e v v fa fart B2, B (7.9
O(,B 9/15211;, 2223 Q,],,QZ ’ /Q/gQ/L} ’
Col 2 WC rZ2) e (ahet) B = (Ralat?)
(78)
Vi is a radial integral over the derivative of the band theory
po%eﬁtial in the rigid muffin-tin approximation.
(79)

-t v
Vﬁlﬁu = f r Rgl(r) Rlu(r) P dr

guB is displayed explicitly in Table II.
. is obtained from (77) where g_, is obtained

To summarize: n
%ﬁich we may

from Table II, and TWJ = TEQ‘ g is obtained from (71)
write as ’
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. 1 t t
v‘L PR ol
Tt . S ]Z(cpvu(k) SPNORNOIICOIE (80)

These Fermi surface integrals are the heart of the numerical cal-
culation. They can be restricted to the irreducible 1/48th of the
Brillouin zone by virture of the fact that the quantity,

ot =1 .t t
Too-(K) = : l}lc’m(k) cg,u(k) , (81)

(where g is the dimensionality of t) has full cubi¢ symmetry. Thus
the main numerical effort involves calculation of integrals of the
form

t t

. 1l
Toazy =485 xet1/a8) T (0 Ty g - (82)

The Fermi surface of Nb is shown in the computer generated per-
spective drawings Figs. 1-3., TFor each mesh point we have calculated
the magnitude of k, the group velocity V,e, and the wave functions
CE (k). The details of the calculation are described in ref. 32.

AT of the points shown were generated from first principles without
the use of interpolation schemes, using the KKR constant-energy-
search33 method. This calculation agrees well with the earlier APW
calculation by Mattheiss”".

VII. COMPLETENESS

The question of whether or not the FSH's for an arbitrary Fermi
surface are complete in the mathematical sense was addressed in ref.
20, but the question was not laid to rest. In this section we are
concerned with the more practical (and perhaps more important) question
of whether or not the functions 7%(k) defined in Eq. (81) can be
expanded as a rapidly convergent series of FSH's for Nb. In order to
answer this question quantitatively we define a quantity p®* _ which
is the percentage of completeness of the expansion of Tu(k?’sthrough
nth order FSH's in the disjoint representation on surface s. Thus

0% 9 = I (F O <)’ 5 (83)
J=0
where
%N, =5 T Sg) ATEN® . (84)
k on s

GAP ANISOTROPY AND T ENHANCEMENT

Figure 1:
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The central sheet or "jack" of Nb containing holes from
the second band. Points of discontinuous slope can be

seen corresponding to points where this s
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the surface of fig. 2 riace touches
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Figure 2:

W.H. BUTLER AND P.B. ALLEN

BRSEIKSSK .

)
LTy

\

The third band open surface of Nb. Tn the earlier work
by Mattheiss this sheet was drawn centered about I', and
appears as a jungle-gym containing hole states. From
the present perspective centered around P the surface
contains electrons and is more reminiscent of a bikini.
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Figure 3:
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Th? tbird band hole surface of Nb
This is one of six such surfaces
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centered at the N point.
called "potatoes', each
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and where ™ s is the expansion coefficient of Ta(k) on sheet s.
1£ the FSH'S’Were known to be complete, this would guarantee (by the

definition of completeness) that the sequence P, Pq~,..py converge
. . 0 % n..
to 1. Since the FSH's are not known to be complete, the empirical
titutes an important test of XN
T
“«© &

-6

convergence of these sequences cons

completeness.
We have carried out calculations for Nb using the seven lowest ‘;3 +m
order FSH's on sheets 1 (the jack(fig. 1)) and 2 ( the jungle-gym g o @,ﬂé
(fig. 2)), and the four {owest order functions (sheet 3) on the o -y NQ N
potatoes, (fig. 3). Our specific choices for the unnormalized £ PRI s
functions £, are listed in Table 11T. The rules given in sec. V S Yo, o
provide an uflambiguous specification of the resulting FSH's FJs (k). B “© © +
In table IV we present our caleculated values of the expansion” co- o ¥ r?g —~
efficients T SOL for Nb, and our final value pnso‘ for the percentage °© L, 0° °
of completeneSs, where only the final term n = M. is shown g «© o o <
explicitly. Typically, about 95% completeness has®Been achieved. £ RO 2
We also give the partial densities of states \)SOL which are the con- - IS <
tributions to the Fermi energy density of states arising from states Z w © o B -
of type o on sheet s, and I, the integral of the radial wave & L+ ~ e
functions R, (x) and R%,(r) with appropriate weighting functions over o & < ., +
the Wigner doitz cell. > 8 «© o 2 o~
= o & v @St m
Q “«
3 o 4 - E i coi + * '
I, = [t Ry () Ry-(¥) B (8,9 (85) ml oo o 8 )
2 o 4 R BN o
=l T BCIRN H
ool o~
The condition that the wave functions he normalized to unity "'g nooco S RN ST <
over the Wigner-Seitz cell for each k point leads to the requirement N o
that = >
Yt o
o g g
- —~ ]
LT (k) ch =1 (86) g « X
b o < > o
© N
o ~ S - 8
The integral over a sheet of Eq. (86) leads to g w + Y B
§ ! S ” > g*
O = 3 > T g
b % T7(k) é}(sk) Ioc = Vg (87) 8 5 + VIS ©
ok ons S 2 < > >
b AL S T e =
3 IO g
Inclusion of a FSH in the k integral of (87) jeads to the following o ]
= -
S L . Z
-t ~ %) < . © .

sum rules,
o -
LT s IOL Vvs/v GJO . (88)
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1o Equation (86) implies that if a single function Tu(k] dominates
the sum (86) for a particular sheet, then, T (k) must be approximately
o ;O o g 8 independent of k over this sheet and can be represented quite well
e 2 0% o B © ¥ 2 by the FSH which is constant on that sheet. This circumstance obtains
Sg g 3 S : - on the jack and jungle gym surfaces where the 22 T'ys. contribution
w9 e < o dominates. Correspondingly we see that the expansion of Tzzlzs’(k)
is more than 99% complete for both of these surfaces taking only
o one FSH. Most of the other functions are also satisfactorily com-
S B 2w o 2 38 plete with the basis we have taken.
M - =
2 g 2 8 8 9 <t The few functions which are not well converged deserve closer
% . N R N scrutiny. The worst offender is the 00I'; function on the jack.
Fortunately this contribution is of negligible magnitude
“ e w0 A (\)2‘/\) < 0.0001) and will not affect our calcuiation of >\‘ .. These
w SN2 g g e o o states are concentrated near the sharp cusp near the tip5 of the
o2 8 8 2 < E jack. The wave functions can be discontinuous in this region due
we e e = o o~ to a band crossing in the I'NH plane which would be removed by spin-
orbit coupling (not included here). It is not yet clear whether
~ the lack of convergence is due to unsuitability of the FSH's for
2 9 3 3 S B describing this function or to numerical noise in the wavefunctions
—~ w8 2 S f}) -0 which are almost zero for these states.
% 5 8 8 28 &8 g S
2 0 oy : ) The largest error in our estimation of the gap anisotwopy and
o T_ enhancement probably arises from the relatively poor convergence
8 o - o 2 of the (33I';5) states on the potato. These states have a fairly
A e 2 2 3 AN high weight for f states and the coupling matrix g , is very large
> TR 2 2 3 o a8 when o is a d state and B is an f state. An examiniation of the
b 2 g o o =2 < o < distribution of the (33I;5) states over the potatoes does not reveal
< X any pathological behavior and we speculate that only a few more
2 el o polynomials of higher order than two will be required to complete
B RN e g g o s 98 the expansion. In any event our overall convergence is quite good
wow %@ é ESERS I as we shall show below.
§ 888 5 7%
1
VIII. RESULTS AND-COMPARISON WITH EXPERIMENT
~
8288 48w
5 S g 3 B < : : Calculations of A for d-band metals based on reliable band
I B4 < & o structure information have only very recently been re?or‘ced. Cal-
! ! culations of n have been done for a number of metals3)“32, but the
= only detailed calculation of X for a transition element to our
v oz 22 . o8 knowledge is that of Yamashita and Asano3® for Nb and Mo. These
e . 2 @ 22 ‘E\n M authors use a very coarse mesh of points on the Fermi surface so
- = 3 g o that (in our opinion) the finer details of their results cannot be
$ 9 . N N h trusted. However, it is noteworthy that these authors have calculated
9 - the anisotropic function A, as well as A for both elements. Extensive
[ J T = T L “ e s calgl}lations of A, and A havc been reported for Cu by Nowak36 and
i 55: > - Das™’. However, E%u has a much simpler Fermi surface than any true
- transition element. We report here the first calculation of the
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Ilculations
iti lement. However, our cal

isot f A for any transition el He pronlations
anlSOLrﬁp{nzluded the part of the anisotropy arlflng gromesioug
pare nok is an extension to the anisotropic problem of pr
Our wor 38—3§

calculations of n.

i 1 symmetric
4 ] tion are two 18 % 18 real s i
o reSU1tSaz£ gur Caiz?lilated for Nb as degcrlbgdség p3? 1223
se are ivi M<w®> = 5. e
i are then divided by ) .
S?CEEOE;é matrice?airlcean AJ.,. There would be 1itt;e gztzt to
, . 0
y;zéenting all 342 nu%bers—mos% of them are small at any
?nStead e o be numgeiz iohstruct the anisotropic mass
o CO?ffl?lentS Cag o uie In the symmetric representatlon{ all
e the oot }k'an . ﬁd A. are small. The calculated s
o leie Coeff1§18235 ngpioximately half of this anisotropytls
i is 6%. ! f oy
o aglsggizgieg in a 3 x 3 calculation using onli ?helcggs ?n
alfeaoﬁials - i.e. a 3 band model. The valqe OﬂAeZEZ éjgﬁificantly
gzrzgmenf with the calculgtion of ref.SZ.Thlivifé reanoﬁs con the
irical” value of 0.82; probal s .
I?rger tﬁzn Z?Z Z?giiésed in ref. 32. We belleveAthat ziieiii;tronlc
dligiigitizn to the relative anisotropy of A an(il1 u;ieitainty v
o ted for in our model even though an overa e
2200?2Ude gtill exists. We obtained ngf:?;ilszZ g]égs e aing
. red with the isotropic value (A-u¥}/(1+A) . 1625 yieldmg
gimpa 00197. This corresponds to a TC enhagcemein e ymmetnic
0 EggK 'The matrix u* was taken to be 0.1 ¢ 1J£90n e
: reséntation. These results are found by so thh o e usiative
v squation (26), and are in good agreement wi pertusbat
Pl gq As a cheék on our calculations we have also ¢ cutated
e§.2£3 éirectlf without using the Fermi §urface heroglc D .
;t is easy to vérify that <Xk > is given in our model by

matrices, N I
Tﬁese

1

O, O
a2y o= (W/Mw?>)? D F Ty Ty 8apBurarlga: (90)
k OLB @vgl
i ! alculated directly,
where IBB' can either be expanded in FSH's or ca
: B! - 8. B
=L nee) THR T ) =11,
B8 Vv k J

= ,02307

2
. . <>‘ 2> - )\
From direct calculation not using FSH's we obtain X 0

1 wi i term expansion To 0J
i very well with our eighteen T ‘ﬁ
wg;gglcomgiizsgivez us considerable extra confidence that % e

FSH basis set is complete.

and the 18 numbers AJ in Table Vv,
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It is somewhat disappointing to discover that the theoretically
predicted anisotropy is so low. This is in accord with numerous
experiments which we cite below. However, it violates an intuitive
notion that Nb with its complicated non-spherical Fermi surface
should be more anisotropic than a metal like 7n with a Fermi surface
not too badly distorted from a sphere. Possibly d-band elements
have an intrinsically more isotropic coupling constant than s-p-band
elements, but if this is $0, we do not yet understand why. To make
the situation more confusing, the noble metals, which should occupg
a middle ground, are known both from experiment38,3 and theory36,37
to have a relatively large anisotropy. Since the transition temp-
eratures of the noble metals (if they in fact are finite) are very
low, it seems likely that anisotropy enhancement will give a large
increase in T in these materials, This in turn suggests that
sample purity may play a larger role than usually expected since

impurity scattering strongly suppresses anisotropy enhancementl0-15
when -h/t 2 kBTc'

The currént experimental situation is mot inconsistent with our
theoretical estimate of 6% rus anisotropy of A in Nb. However, the
experimental situation is far from unambiguous so we indulge here in
a brief review. A variety of experiments, tunneling, ultrasonic
attenuation, heat capacity, thermal conductivity, T reduction in
dilute alloys, and critical field anisotropy, can all be interpreted
in terms of gap anisotropy. In niobium most of the experiments so
far seem to have a somewhat ambiguous interpretation. Critical field
anisotropy 0
which permit comparison. There
are several sources of critical field anisotropy, some of which do
not require A to be anisotropic. Williamson measured a variation
of 10% in HC2(6) as 0 was varied in the (110) plane. This variation
can be accouited for in a non-local model taking into account the

known Fermi surface geometry and not necessarily requiring any
anisotropy in A.

Heat capacity at low temperatures is most sensitive to the
minimum energy gap, whereas nearer to T » @ more nearly isotropic
average of the. gap is measured. Recent ‘measurements of C.. in Nb by
Sellers et al"~ show no evidence for strong anisotropy ang indicate
that the anomalous results of earlier studies may have arisen from
H impurities. A similar conclusion was reached by Anderson and
collaborators in studies of the thermal conductivity42,43,

The behavior of T in dilute alloys of Nb has apparently not
been much studied, alt ough we may have missed some literature.
The most Systematic study known to us is by Ronami and Berezina44
who found a sharp minimum in T at concentrations less than 0.6%
of column IV and vI transition metal impurities. Unfortunately
they were unable to establish the precise concentration of the
Mnimum because of sample difficulties, and they did not measure



W.H. BUTLER AND P.B. ALLEN
114
TABLE V
Expansion coefficients for the energy gap and mass enhincementt;?cu
Fermi Surface Harmonics. These coefficients are for the symmetri

orthonormal basis where F,, F , and F,,, are symmeﬁrléed combinations
of the functions which aré constants on a single shee

J sheet AJ/AO A

0J
0 1,2,3 1.0000 1.2739
0 1,2,3 -.0390 -.0883
0! 1,2,3 -.0196 -.0435
1 1 .0273 0677
2 1 -.0093 -.0178
3 1 .0007 -.0016
4 1 .0027 .0045
5 1 .0017 .0062
6 1 -.0016 -.0045
1 2 .0290 .0821
2 2 -.0043 -.0073
3 2 ~.0010 -.0037
4 2 . 0004 .0005
5 2 -.0008 -.0015
6 2 -.0034 -.0101
1 3 ~.0107 -.0227
2 3 -.0080 -.0169
3 3 . 0065 L0181
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the residual resistances. Tt is difficult to learn the magnitude
of the depression at the minimum from their paper, but it is

apparently around 0.2°K and species dependent. We urge that further
studies be made of this effect.

In principle the ideal experiment to probe gap anisotropy is
single crystal tunneling, which can measure A in specific directions
in k space., Also polycrystalline tunneling can determine the rms
anisotropy from the broadening of the onset of normal resistance at
eV v A, Unfortunately the applicdation of tunneling to transition
elements has proved to be extremely difficult, probably because of
surface contamination. A recent report™®

finds 24 ~ 3.93kT_ in
single crystal samples, with no evidence of any anisotropy greater
than 2%. Barlier reports had been interpreted in terms of very

large anisotropy, but this is now ascribed?® to sample prohlems.

Ultrasonic attenuation has also been int
very large anisotropy, but recent experiments™” on very pure samples
are more consistent with an interpretation of very weak anisotropy.
In the quantum regime q% >> 1 which is achieved only in very pure
samples and high ultrasonic frequencies, the attenuation is caused
by "belts" of electrons in the fermi surface with v, perpendicular
to the 4 of sound. At low temperatures the attenuatson is principally
caused by the states on this belt wiﬁg the minimum gap. By analyzing
low T attenuation data, Carsey et al”’ have found ZA/kBTC = 3.7 for

in the [111] direction, 3.64 in the [100] direction, anid 3.84 in
the [110] direction. A later experiment48 with a purer sample and
larger q& revised the value on the [100] direction from 3.64 to 3.56.
These experiments seem at the moment to provide the clearest evidence
that rms gap anisotropy in Nb is in the range 5-10%. It is also
noteworthy that a new technique which amounts to very hiﬁh frequency
ultrasonic attenuation has been developed using neutrons?® and that
within the resolution of this experiment, phonons in the [100] and
[110] directions see the same energy gap in niobium.

g preted in terms of
O

At the moment it seems premature to make a very detailed com-
parison between theory and experiment. We can hope that in the near
future both will improve and allow a more critical test of this

interesting lapse in our microscopic understanding of d-band super-
conductors.,
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QUESTIONS AND COMMENTS
E. : is is i
Fawcett: Th]S is a Fermi ;urface question. You have shown dr
ings of.the Fermi surface of Nb which do not‘seem toaw_
agree w1th my recollection of the Fermi surfaé i
by Mattheiss' calculation. °even
W. Butler: rmi i
er: ZZi Fermi surfgce which we obtained is essentially the
elli as.gatthelss‘ I think you recognize the diétorred
o ﬁsoi.,hand you recognize the jack. The third '
cet which we have shown as a surface inin
S contain
ileitrons centered at P will look quite differégf if it
S drawn as a surface containing holes centered at T
B. G : i |
yorffy: Can you tell if there were any cancellations? The

g;Ealliesglt mighF come out small, but if there were
thaieth?t19ns during the calculation one should conclude
1s 1s not a general rule and, indeed, in other
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systems you might have a bigger anisotropy.

Yes, there were cancellations. The small value of the
gap anisotropy is due not only to the fact that the
density matrix expansion coefficients T are small in
absolute value for J # 0, but also to tﬂe fact that
they can be positive or negative. 1 would guess that
the rms anisotropy miéht be doubled or tripled if one
were to replace the Tj's by their absolute values in
calculating the gap. Other systems would be expected
to have "cancellations' too, however, and it is not
clear that niobium is an exceptional system with regard
to the importance of this effect.

This is a cubic crystal. The example you took before
is zinc which is hexagonal. Do you expect much bigger
anisotropy?

Generally we expect bigger anisotropy in hexagonal
systems than in cubic. Zinc, however, is generally
considered to be a simple metal with a Fermi surface
not too much distorted from a sphere. Our initial
expectation was that the complicated Fermi surfaces of
transition metals should lead to large anisotropies
compared to the simple metals.

You get a mean square anisotropy of 0.004 which is
presumably what your approximation allows you to cal-
culate to some accuracy. What is that accuracy?

There are various sources of error. The most important
source is our neglect of anisotropy arising from the
phonons. Our initial expectation was that the elec-
tronic contribution to the gap anisotropy would be at
least as important as the phonon contribution. Now
that the electronic contribution has turned out to be
so small we can no longer be confident that this is
so. We plan to treat the phonons on an equal footing
with the electrons in a later calculation. As for the
other sources of error---Fermi surface harmonic expan-
sion convergence, band theory convergence, matrix
element uncertainties, etc.---we estimate the net
effect of these errors on the relative gap anisotropy
to be on the order of 10%.

Would you care to speculate on the anisotropies in the
A-15's---in terms of similar kinds of caleulations?

No. Except to say that our calculation for Nb indicates
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thét one can have a very anisotropic Fermi surface
whjchvdoes not lead to a large anisotropy of the ga
functlon: This is partly due to the fact that in NE
the density of states is fairly uniformly distributed
over the Fermi surface. This might happen in the
A-15's also. 7

Do you think the anisotro i i
< py in the A-15's 8
for example? b s 1s larger,

You obv1ogsly haye a very strange Fermi surface there.
A very anisotropic Fermi surface.

We are not talking about doing real calculations. We
all know that they are very difficult.

The only thing I am going to say, Fred [Mueller], is
how I use my intuition here. I say 'well, I seé’a\
very agisotropjc Fermi surface and maybe éhero is a
plg anisotropy in the gap. There is a big anisotrop
in the Fermi surface obviously of niobium and it didy
not lead to suchabig anisotropy of the gap'.

1 think the point is that niobium is a surprise.
Yes, that is all I am saying.

I did not find niobium so surprising.

You have better intuition, that's all.

;t is quite possible, the fact that the gap function
}nvo%ves a convolution integral over the Fermi surface
implies that anisotropy in the Fermi surface will not
geflect equally in the gap function. I have a dif-
ferent question. There are several weak-coupling
calculations in the literature that suggest that if
the mean free path due to impurity scattering ié )
?ess than the coherence length, the gap will be
1sotropig. Are there reasons to believe that this
result will not hold in a strong-coupling calculation?

No. Ou? calculation, however, neglected impurity
scattering. 1t should be applicable in the limit of
very long mean free path.

IF }s'true that the anisotropy enhancement of T. is
diminished when the mean free path (%) is as”shgrt as
the coherence length (&). However, the enhancement
by no means vanishes at that point. It washes out
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rather slowly and continues to be measureable even when
2 is much shorter than &.

One more experimental comment: If you look at ultra-
sonic data, or thermal conductivity, or specific heat
there is zero anisotropy observed for niobium.

I thought it was more than zero.
Zero.

Ultrasonic attenuation measurements by Carsey et al.
[Refs. 47 and 48] suggest 5 or 10% anisotropy.

That is not al all clear; see C. Gough's paper.

T am a little confused about Varma's remarks because
in niobium if I remember the coherence length is some-
thing like 400 A and at rogm temperature the mean free
path is something like 50 A, but if you have a resis-
tance ratio of 100 then the mean free path at low
temperatures would be much larger than the coherence
length.

{ am talking about the impurity mean free path and I
am really concerned about the A-15's.

That depends on how pure you get your niobium, doesn't
it?

We know that anisotropies in k space are just some-
thing like Fourier transforms of anisotropies in real
space. Since it is well known from the band structure
point of view that using spherically averaged charge
densities and potentials give very good values of
macroscopic quantities, maybe it isn't such a surprise
that anisotropies in k space do not show up very
strongly.




