
Electrons in graphene Ð massless Dirac electrons and Berry phase 
 

Graphene is a single (infinite, 2d) sheet of carbon atoms in the graphitic 
honeycomb lattice.  On the left is a fragment of the lattice showing a primitive unit cell,  

  

with primitive translation vectors a and b, and corresponding primitive vectors G1, G2 of 
the reciprocal lattice.    On the right is the central part of the reciprocal lattice and the first 
Brillouin zone.  The corners of the Brillouin zone are the points Ki given by 

, etc. Only two are inequivalent.  

Notice for example that . 
 Because the lattice is 2-dimensional, all translations commute with reflection in 
the plane of the lattice, so all electron (or vibrational) eigenstates can be chosen to be 
either even or odd under this reflection.  For this reason, the single-particle electron states 
are rigorously separated into two classes, called “! ” and “" ,” the even !  states being 
derived from carbon s and px, py orbitals, and the odd "  states being derived from carbon 
pz orbitals.  These latter are cylindrically symmetric in the x-y plane, lie near the Fermi 
level (half-filled) and are the electrically active states of interest in low energy physics. 
 A useful picture of electron behavior can be derived by using Hückel theory to 
look at the "  electrons (pz orbital-derived states.)  The two sublattices are shown below in 
different colors, with the “A” sublattice at vectors , and the “B” sublattice  
at vectors , with .  The Hamiltonian in nearest neighbor Hückel 
theory is  
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where is a pz (" ) state on an A sublattice atom at site , is a similar state on a 

B sublattice atom, and t is the “hopping integral” (positive) from a state to an adjacent 
similar state.  The abbreviation “h.c.” means Hermitean conjugate.  The graphite lattice is 
“bipartite.”  The hopping matrix element couples states on the A sublattice only to states 
on the B sublattice, and vice versa.  We now transform to the basis of Bloch waves, 

 

. 



 

 
This transformation block-diagonalizes the 1-electron Hamiltonian into 2 x 2 sub-blocks, 
with diagonal elements and both zero, and off-diagonal elements 

. 

The single particle Bloch energies are thus , where 

. 

Let us write .  The Schrödinger equation is then , 

with the Hamiltonian matrix being 

 

Then the eigenvectors ! k are 

 and . 

Note that the phase factors become the 1/3rd roots of unity, 
, when lies on a corner point of the Brillouin zone, K1, K2.  

Therefore, the energy  at the zone corners.  Everywhere else in k-space, 

and the splitting of the two graphene ! -bands is .  The two bands (called 

!  and ! *) lie symmetrically above and below the Fermi energy, E=0.  The bands are 
plotted below to the left.  A more elegant two-dimensional presentation, from Saito and 
Kataura (Dresselhaus, Dresselhaus, and Avouris, eds., Carbon Nanotubes, Springer, 
2001) is shown below to the right.  A beautiful photoemission experiment by Bostwick et. 



al. is also shown.  The dispersion seen for the photohole fits amazingly well to the 
Hückel formula.   

A perfect graphene sheet has one electron per carbon in the ! -levels. Therefore, 
the Fermi level is between the two symmetrical bands, with zero excitation energy 
needed to excite an electron from just below the Fermi energy to just above at the K-point.   
The (" " * ) degeneracy at isolated points K at the Fermi energy is general to the one 
electron description of graphene.  It follows from symmetry, and is not just an accidental 
result of the Hückel model.  For example, the figure below from Saito and Kataura shows 
that even though a more accurate theory does not have exact particle-hole symmetry, the 
degeneracy at the K points persists. 

  

 
E(k) for photohole, from Bostwick et. al., 
Nature Physics published online 12.10.2006 

Fitted linewidth versus energy at various 
dopings n (unit = 1013 cm-2) 

 

 
 The wavefunctions of graphene have attracted a lot of interest.  Let us consider a 
circular path in k-space around the point K1 or equivalently, K2.  The energy is a linear 
function of .  If you move adiabatically in k-space around the K point, the 
wavefunctions acquire a “Berry phase” ei

"=-1 when completing a circuit.  This can be 
seen by expanding the Hamiltonian matrix (or more specifically, the phase factors   
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to first order in .   
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where #  is the angle from the x-axis in the kx,ky plane.  Here the formulas   
and  were used.  Thus equals , and has phase $=-#-" /2.  

Since the wavefunctions have phases ±$/2, they change phase by "   when #  increases by 
2" , that is, when the -vector goes once around a loop surrounding a K point.   

The code words “massless Dirac spectrum” are used to refer to the linear % versus 
k relation, and the special points Ki are called the “Dirac points,” shown below on the left.  
If a perfect graphene sheet is given an extra electron or hole, it will lie near a K point, and 
under a dc magnetic field , will form a cyclotron orbit, orbiting around K.  The Berry 
phase of "  has the consequence that the quantized cyclotron orbits (Landau levels) will 
require half-integral numbers of wavelengths to give single-valued wavefunctions, to the 
energy will be quantized as where n is an integer. 

  
 

 
 In Nature vol. 438, 10 Nov. 2005, there were back-to-back papers from the 
Manchester-Chernogolovka-Nijmegen group (Geim et al.) and the Columbia group (P. 
Kim et al.) reporting the quantum Hall effect in graphene.  The samples were monolayers 
of carbon lying on a thin silicon oxide layer on top of a doped silicon substrate which 
served as a gate electrode.  The middle and right figures above are from the Geim paper 
showing how gate voltage dopes graphene p-type (as shown by the positive Hall 
coefficient RH, through zero, to n-type.  Both RH  and electrical conductivity !  extrapolate 
to zero when the Fermi level passes through the Dirac points.  Interestingly, !   is actually 
pinned at a minimum value near 4e2/h, and seems not to actually go to zero.  The 
quantum Hall effect signals are plotted below.  Both groups unambiguously see  



 

 

half-integer quantization, exactly as predicted by two theoretical groups shortly before 
the measurements.   
 

Nearly free electron method 
 
 As an alternative model for graphene, suppose we had a two dimensional electron 
gas (2-deg) with a weak periodic potential applied.  The applied potential has honeycomb 
symmetry.  As a more faithful realization, we could imagine a GaAs/(Ga,Al)As inversion 
layer with a patterned top electrode in honeycomb morphology.  The Hamiltonian is 
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The geometry was shown in the first figure.  The origin is now taken in the center of a 
hexagon, not on a “atom” site, and the “atoms” are then at .  I am 
assuming that the applied potential is the sum of localized cylindrical terms, depending 
only on   
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r = x2 + y2 .  Then the single-particle states can be expanded in plane 
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where the off-diagonal terms Vtot are products of single-site pseudo-potential form factors  
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/2m.  The weak potential shifts 
energy only to second order, except at symmetric places in the Brillouin zone (e.g. 
boundaries) where  for some pair of reciprocal lattice vectors and .  
The K points in the Brillouin zone are special.  Consider the plane wave at the point K1 
shown in the first figure, .  This has a kinetic energy %=%(K1) degenerate with 

the kinetic energy of  which lies at the special point K3 in the first figure, 



and with which lies at the special point K5.  The dominant part of the 
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The notation V is the form factor  

! 

V
! 
G ( )  for the relevant vector difference , and 

the factor -1/2 is the corresponding structure factor S.  Let us use a little group theory.  
The point group of graphene is D6h.  The three basis functions  , ,  do not close 
under the operations of D6h because the rotation by 2! /6 takes K1 into the inequivalent 
point K2.  But these three functions do close under, and thus generate a representation of, 
the subgroup D3h (known as the “little group” of the wavevector K.)  It is easy to see that 
the vector 
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0 = 1 + 2 + 3( )/ 3has  symmetry and is an eigenvector with 
eigenvalue E0=%0-V.  Using $ to denote the angle 2" /3, the vectors 
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vectors for an EÕ doublet of eigenvalue E1=%+V/2.  This doublet lies lower in energy if V 
is negative, and is a Dirac point.  To see that, we have to make a Taylor expansion for 
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where %1 is   
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/2m, and similar for %2 and %3 .  To solve this, first transform 

to the basis of eigenvectors with , namely
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where ÒsmallÓ means that the energy shift will be second order in .  Our concern now 
is with the eigenvalues and eigenvectors that evolve from the EÕ doublet (the second and 
third rows and columns of the matrix.)  We need only solve this 2 x 2 submatrix, since 
the influence of the other state is second order.  The elements of this matrix are  
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Therefore the relevant 2 x 2 submatrix is  
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The energy eigenvalues are massless Dirac spectra,   
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and the eigenvectors contain exp(±i#/2), that is, they change sign when the angle 
 goes once around the Dirac point.  It is interesting that the conical 

dispersion around the Dirac points does not depend on the size of the applied potential.  
This can only be true when the conical energy increments  are less 

than the increments ±V/2 caused by the external potential.  At larger separations , the 

bands have to evolve back to free electron form. 
 The underlying Hamiltonian is real, but the matrix representations we looked at so 
far were complex Hermitean.  This is a consequence of the choice of basis functions.  A 
different basis could have given a real-symmetric Hamiltonian.   
 The question arises whether similar effects should show up in graphite.  There is a 
nice recent paper “Phase analysis of quantum oscillations in graphite,” by I. A. 
Luk’yanchuk and Y. Kopelevich (Phys. Rev. Lett. 93, 166402 (2004)) which comes close 
to addressing this issue.  I am not sure the matter is yet laid to rest. 
 
Philip B. Allen 
Stony Brook University, April 2007 
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