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Linear Response Theory and Kubo Formulas

I. SUSCEPTIBILITY

The relation �hMi = hMi �M0 = �H relates a response �hMi to an applied external �eld H.
In case there is a magnetization hMi = M0 in zero applied �eld, this has been subtracted out. This
de�nes a linear response coe�cient �. Since the complete response will always have some non-linear
behavior at high �elds H, it is necessary to remember that � is de�ned in the limit of a small applied
�eld (� = @hMi=@H.) It is also assumed that the system is held close to thermal equilibrium at
temperature T by a heat bath.

We now generalize this de�nition to a general sort of response to an arbitrary sort of �eld. Let
the �eld be denoted by F (~r; t) and the response be some measureable property p(r) which is the
expectation value of an operator p̂(r). The general linear relation between p(r) and F is

�hp̂(~r; t)i =
Z
d~r

Z t

�1

�(~r; ~r0; t� t0)F (~r0; t0): (1)

Note that the response in general can be non-local in space and in time. The range in time over
which the system \remembers" the earlier external perturbation is the characteristic relaxation or
thermalization time � . (Hydrodynamic e�ects can cause long-time \tails" in the response function,
but these are usually unimportant for transport properties of solids.) The spatial range is the
characteristic particle mean free path or thermalization length `. (Long-range particle interactions
are usually not important either.)

To simplify the notation, let us temporarily consider the special case of a spatially homogeneous
applied �eld F (t), and study the property P which is p(r) spatially averaged over the volume V of
the system.

P̂ �
1

V

Z
d~rp̂(~r) (2)

�hP̂ (t)i =
Z t

�1

dt�(t� t0)F (t0) (3)

�(t� t0) =
1

V

Z
d~r

Z
d~r0�(r; r0; t� t0): (4)

Nearly all of the general results of linear response theory are statements about �(t� t0), which also
apply to the more general case of �(r; r0; t� t0).

The universe has four components: the \system" under observation, the observer, the �eld F
controlled by the observer, and the heat bath which keeps the system at equilibrium when F is not
applied. The response function � is a property of the system at temperature T , but not in general an
equilibrium property; it can't be calculated from the partition function Z, for example. However, �

1



can be computed from knowledge of the ground state and excitations of the system. We shall see that
it is a kind of correlation function describing 
uctuations which occur in the system in equilibrium.

Before the �eld F is applied, there is no response. While in equilibrium, the system is invariant
in time (this is the de�nition of equilibrium.) Therefore the response at time t can only depend on
the interval t � t0 between the time of measurement t and the time t0 at which the �eld acts. In
general, the system is not invariant under translations in space, so � depends separately on the point
~r of measurement and the point ~r0 at which the �eld acts, and not just on the interval ~r � ~r0.

The spatial integral in Eq. (1) goes over the whole system, while the time integral goes only over
times t0 before the measurement is made. This is the fundamental property of \causality." To be
speci�c, suppose the �eld has the form of a \unit impulse", F (t) = �(t). The results of the rest of
this section will be written for the spatially homogeneous case �(t � t0) but will also apply to the
inhomogeneous case �(r; r0; t� t0). From Eq. (1), the response to this unit impulse is

�hP̂ (t)i = �(t) (5)

where �(t) is de�ned to be zero for negative times t. In words, � is de�ned as the response at time
t to a unit impulse applied at time t = 0. It is also interesting to consider the response to an ac
applied �eld

F (t) = F0e
�i!t (6)

�hP̂ (t)i � �(!)F0e
�i!t: (7)

This de�nes the frequency-dependent susceptibility, �(!). From Eqs. (1,6,7) we �nd

�(!) = �1 + i�2 =
Z
1

0
d��(� )ei!� : (8)

Thus �(!) is a complex function. Any actual applied �eld F (t) will be a real quantity, so the correct
interpretation of Eq. (6) is that only the \real part" F0 cos(!t) is meant. Because the response is
linear, and taking the real part is a linear operation, therefore the response to the real part of the
complex �eld F0 cos(!t) is the real part of the (not actually physical) response to the complex �eld.
This means that the correct interpretation of Eq. (7) is

� < P̂ (t) >= �1(!)F0 cos(!t) + �2(!)F0 sin(!t): (9)

Thus the \real" and \imaginary" parts �1 and �2 have the interpretations that �1 gives the \in-
phase" part of the response (oscillating like cos(!t) as does the �eld) while �2 gives the \out-of-
phase" response. It will turn out that one of these parts contains the dissipative response, and the
other is \reactive."

Causality gives an important relation between these two pieces, known as the \Kramers-Kronig"
relations. First we show that causality implies that �(!) as given in Eq. (8), is analytic in the upper
half of the complex z plane, when considered as a function of a complex frequency z (whose real part
is the physical frequency !.) Writing z = x+ iy where x = !,

�1 =
Z
1

0
d��(� )e�y� cos(x� ) (10)

�2 =
Z
1

0
d��(� )e�y� sin(x� ): (11)

2



The Cauchy relations are necessary and su�cient conditions for a function to be analytic, and are
clearly satis�ed by Eqs. (10,11):

d�1=dx = d�2=dy (12)

d�2=dx = �d�1=dy: (13)

To prove that Eqs. (12,13) follow from (10,11) it is necessary to interchange the operations of dif-
ferentiation and integration, which is permitted only if the integrals are absolutely convergent. This
property clearly holds only when y > 0, i.e. in the upper half z plane. Also it is clear that if �
had not been causal, that is, if �(� ) had been non-zero for negative as well as positive times � , then
analyticity would not have been established anywhere. The fact that it is the upper rather than
the lower half of the complex frequency plane where � is analytic follows from an arbitrary sign
convention introduced in Eq. (6), namely that the external �eld oscillates as e�i!t rather than as
e+i!t. The two choices are equally sensible, so it is necessary to choose a convention and stick with
it.

The Kramers-Kronig relations are valid for any function which is analytic in the upper half plane
and vanishes as jzj ! 1. Cauchy's theorem gives the identity

0 =
I
C
dz

�(z)

z � !
(14)

where C denotes the contour shown in �g.1.

ω

Figure 1 The contour C used in Eq. (14)

Because � vanishes as jzj goes to in�nity, the large arc of C contributes nothing as it recedes to in�nity.
The remaining part of the contour can be separated into the straight part, which becomes a principle-
value integral as the small arc shrinks, and an integral over the small arc which is parameterized by
z = ! + �ei�. Thus Eq. (14) becomes

0 = P
Z
1

�1

d!0
�(!0)

!0 � !
+ lim

�!0

Z 0

�

i�ei�d�

�ei�
�(! + �ei�): (15)

This becomes the general relation

�(!) =
P

i�

Z
1

�1

d!0
�(!0)

!0 � !
: (16)

Finally, separating into real and imaginary parts and using the results from Eqs. (10,11) that �1 is
even in ! and �2 is odd, this becomes

�1(!) =
2P

�

Z
1

0
d!0

!0�2(!0)

!02 � !2
(17)

�2(!) = �
2!P

�

Z
1

0
d!0

�1(!0)

!02 � !2
: (18)
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II. MECHANICAL PERTURBATIONS

Let the system be described by the Hamiltonian

H = H0 � Q̂F0e
�i(!+i�)t � H0 +H 0(t) (19)

where H0 describes the \system" and F0 is the amplitude of the applied �eld as described above.
It is assumed that this �eld is coupled linearly to the system through some operator of the system
denoted by Q̂. The frequency ! is given an in�nitesimal positive imaginary part �, such that the
�eld is \o�" at t = �1 and gradually turns on as t increases. At t = �1 the system is in thermal
equilibrium, and is therefore described by a density matrix � = �0 given by

�0 =
1

Z
e��H0 (20)

where � is the inverse temperature 1=kBT and Z is the partition function Z = tr exp(��H0).
To follow the evolution of the system as the temperature evolves, we can integrate the Liouville

equation,

i
@�

@t
= [H(t); �(t)] (21)

which can be written in integrated form as

eiH0t�(t)e�iH0t = �0 � i
Z t

�1

d�eiH0� [H 0(� ); �(� )]e�iH0� (22)

This can be solved by iteration in powers of the perturbation H 0. We are interested in the response
only to �rst order in H 0, so iterating to �rst order we get

�(t) = �0 + ��F0e
�i(!+i�)t (23)

�� = i
Z
1

0
dt0e�iH0t

0

[Q̂; �0]e
+iH0t

0

ei(!+i�)t
0

: (24)

Using this formula we can calculate the evolution to �rst order in F0 of any physical measurable such
as P̂ . This gives a result for the susceptibility,

�(!) = i tr
Z
1

0
dt0e�iH0t

0

[Q̂; �0]e
+iH0t

0

P̂ ei(!+i�)t
0

: (25)

Using the cyclic invariance of the trace, this can be written as

�(!) = i tr
Z
1

0
dt0[Q̂; �0]P̂ (t

0)ei(!+i�)t
0

: (26)

where the time dependence of the operator P̂ is de�ned in the usual Heisenberg picture (which is
the \interaction" picture relative to the total Hamiltonian H0 +H 0)

P̂ (t) � e+iH0tP̂ e�iH0t: (27)

Using again the cyclic invariance of the trace, the answer for � can be written in a well-known
\retarded commutator" form known as the \Kubo formula,"
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�(!) =
i

�h

Z
1

0
dtei!th[P̂ (t); Q̂(0)]i (28)

�(t) =
i

�h
h[P̂ (t); Q̂(0)]i�(t): (29)

Factors of �h, which were previously set to 1, have been restored for this �nal version. The Heaviside
function �(t) is 1 when t > 0 and 0 otherwise, and the angular brackets denote an equilibrium thermal
ensemble average,

hD̂i � tr�0D̂ (30)

Sometimes it is convenient to have an alternate version where the commutator is eliminated in favor
of an integration over imaginary time. This is accomplished by using the operator identity

e�H0Q̂e��H0 � Q̂ =
Z �

0
d�

�
e�H0[H0; Q̂]e

��H0

�
: (31)

which is equivalent to

[Q̂; �0] = �i�0

Z �

0
d�

_̂
Q(�i�) (32)

The factor in parentheses in Eq. (31) has be written in shorthand notation as
_̂
Q(�i�), where the

\dot" denotes a time derivative using the Heisenberg operator equation of motion, and the operator
Q̂ is given an imaginary time t = �i� using the Heisenberg formula Eq. (27). Applying this identity
to Eq. (26), the result is

�(!) =
1

�h

Z
1

0
dt
Z ��h

0
d�ei!th _̂Q(�i�)P̂ (t)i: (33)

This is an equally well-known version of the \Kubo formula." One advantage of the elimination of
the commutator is that it is easy to take the classical limit (�h! 0) of Eq. (33),

�cl(!) =
1

kBT

Z
1

0
dtei!th

_̂
Q(0)P̂ (t)i: (34)

All of the preceeding formulas are easily generalized to the spatially inhomogeneous case. The
perturbing part H 0 of the Hamiltonian (Eq. (19)) now must be written as

H 0(t) = �
Z
d~rq̂(r)F0(r)e

�i(!+i�)t (35)

where q̂(r) is the operator for the density of the property Q which the �eld F couples to. The relation
of Q to q(r) is the same as the relation of P to p(r) in Eq. (2), except not having the 1=V factor.
The Kubo formulas for the susceptibility �(r; r0;!) (Eq. (1)) are now

�(r; r0;!) =
i

�h

Z
1

0
dtei!th[p̂(r; t); q̂(r0; 0)]i (36)

�(r; r0;!) =
1

�h

Z
1

0
dt
Z �

0
d�ei!th _̂q(r0;�i�)p̂(r; t)i: (37)

Eqs. (28,33,36,37) are the general forms of the Kubo formula which relate the response functions
of a system driven weakly away from equilibrium to the equilibrium 
uctuations of corresponding
internal densities of the system.
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III. ELECTRICAL CONDUCTIVITY

As an example of a Kubo formula, consider the electrical conductivity �(r; r0;!) de�ned as the
linear response of the current j(r) to an ac electric �eld E(r0). In its fully non-local and tensorial
form, this is de�ned by

hĵ�(r; t)i =
Z
d~r0���(r; r

0;!)E�(r
0)e�i!t: (38)

We will drop the vector and tensor subscripts. Most often we are interested in the homogeneous
conductivity of either a cubic or a polycrystalline material where the conductivity is a scalar. The
current density operator is

ĵtot(r) = ĵ(r) + ĵdia(r) (39)

ĵ(r) = �
e

2m

X
i

[pi�(r � ri) + �(r � ri)pi]: (40)

ĵdia(r) = �
n̂(r)e2

mc
~A(r) (41)

n̂(r) =
X
i

�(r � ri) (42)

When a transverse electromagnetic �eld is applied, the coupling term in the Hamiltonian is

H 0 = �
1

c

Z
d~rĵ(r) � ~A(r)e�i!t: (43)

Only the \paramagnetic" part of the current is kept. The \diamagnetic" part corresponds to the
A2 term in the Hamiltonian which does not a�ect the linear response. Using the relation ~E =
�(1=c)@ ~A=@t, the vector potential can be replaced by cE=i!, and Eq. (43) can be written

H 0 =
Z
d~r

Z t

�1

dtĵ(r) � ~E(r; t) =
i

!

Z
d~rĵ(r) � ~E(r)e�i!t: (44)

The density q̂(r) which couples to E is thus �iĵ(r)=!, and the conductivity can be written

�(r; r0;!) =
in(r)e2

m!
�(r � r0) +

1

�h!

Z
1

0
dtei!th[ĵ(r; t); ĵ(r0; 0)]i: (45)

In the uniform case, this becomes

�(!) =
ine2

m!
+

1

�h!V

Z
1

0
dtei!th[Ĵ(t); Ĵ(0)]i (46)

where n = N=V is the average density of electrons. The �rst term of Eqs. (45,46) comes from the
diamagnetic term Eq. (41) of the current, which 
ows with no deformation of the state of the system.
In the dc limit this diverges, but must be cancelled by another divergent term from the second part of
the formula. It is convenient to have a formula in which the divergent parts are explicitly cancelled.
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In the uniform case this can be accomplished as follows. The uniform current operator Ĵ is related
to the uniform polarization operator �̂,

Ĵ = �
e

m

X
i

pi (47)

�̂ = �e
X
i

ri (48)

Ĵ =
_̂
� =

i

�h
[H0;�] (49)

[�̂; Ĵ] =
iNe2�h

m
: (50)

Eq. (46) can be replaced by

�(!) =
ine2

m!
+

1

�h!V

Z
1

0
dtei(!+i�)t

d

dt
h[�̂(t); Ĵ(0)]i

=
ine2

m!
�

1

�h!V
h[�̂(0); Ĵ(0)]i

�
i

�hV

Z
1

0
dtei!th[�̂(t); Ĵ(0)]i (51)

where an integration by parts has been performed. Now the diverging diamagnetic part is cancelled
exactly by the equal time commutator (using Eq. (50)) and the conductivity becomes

�(!) = �
i

�hV

Z
1

0
dtei!th[�̂(t); Ĵ(0)]i (52)

It is now convenient to remove the commutator, using the identity Eq. (32). The result is

�(!) =
1

�hV

Z
1

0
dt
Z �

0
d�ei!thĴ(t� i�)Ĵ(0)i: (53)

There is an alternate route to the results Eq. (52,53) which starts with a di�erent representation
for the electric �eld

H 0 = ��̂ � ~Ee�i!t (54)

This form assumes a homogeneous �eld which can be considered equally well to be longitudinal. Now
the quantity Q which couples to the �eld is �, and the conductivity follows from Eq. (28),

�(!) =
i

�hV

Z
1

0
dtei!th[Ĵ(t); �̂(0)]i: (55)

It is not obvious that Eq. (55) and Eq. (52) are consistent with each other. The commutators
â = [�̂(t); Ĵ(0)] and b̂ = [�̂(0); Ĵ(t)] are not the same, but because of the relation Eq. (49), it can be
shown that their diagonal matrix elements in the energy representation are the same, which proves
consistency. Eq. (55) can be transformed to the version with no commutator,
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�(!) =
1

�hV

Z
1

0
dt
Z �

0
d�ei!thĴ(�i�)Ĵ(t)i: (56)

Eqs. (45,46,52,53,55,56) are the most important forms of the Kubo formula for the electrical conduc-
tivity.

A useful way to analyze Kubo formulas is to expand the thermal averages in a complete set of
hypothetical many-body eigenstates jni of energy En of the HamiltonianH0. This is called a spectral
representation. If we look only at the real part of �(!) for positive values of !, the result can be
written as

Re�xx =
�

V !

X
m;n

e��En

Z
jhnjJxjmij

2�(�h! � (Em �En)) (57)

This is recognizable as the Fermi \Golden Rule" result that you would get by calculating the power
(�E2) absorbed from the electromagnetic �eld. This shows that the Kubo formula is really just a
fancy way of expressing the Fermi Golden Rule. Both are lowest order time-dependent perturbation
theory applied to the perturbation H 0 using the states of the unperturbed problem H. There are
certain advantages to the Kubo formula. One is that sometimes, by heroic computational e�ort,
a direct calculation of the correlation function is possible. Another is that since the exact many-
body states are almost never known, one needs powerful many-body perturbation theories to try
to evaluate � accurately, and the Kubo formula provides one possible starting place. However, this
route is very di�cult. Usually it starts from an unperturbed theory in the form of a free gas. The
result of a very tedious calculation is then to acquire a good theory for a not-too-strongly interacting
gas, namely Boltzmann transport theory. When the gas becomes too strongly interacting, the Kubo
formula is still exact in principle, but the perturbation theory used to evaluate it breaks down.
Leading corrections to Boltzmann theory can sometimes be found, but not (by perturbation theory
alone) a result that carries over to the strongly-interacting case. Amazingly, it turns out that the
Boltzmann theory is quite robust, applying sometimes to strongly interacting situations where simple
arguments would suggest that it should fail. Unfortunately there is a common tendency to assume
that a Boltzmann theory applies only to a very weakly interacting case, and that a theory based
on a Kubo formula (or some other Green's function starting point) is necessarily better. Very often
it turns out that a laborious evaluation of a Kubo or Green's function expression yields just an
approximate solution of the Boltzmann equation; an equally good or perhaps better answer could
have been obtained more quickly from the Boltzmann theory directly.

IV. A NON-MECHANICAL CASE: TEMPERATURE GRADIENT

A very interesting case of a non-mechanical perturbation is an applied temperature gradient. The
problem is to �nd the corresponding heat current, or in linear approximation, to �nd the thermal
conductivity, de�ned by

hŝ�(r)i = �
Z
d~r0���(r; r

0)
@T (r0)

@r0�
(58)

where ŝ(r) is the heat current density operator. In principle we could consider a time-varying
temperature gradient, but in practise, the time scale on which the temperature varies is so much
slower than the microscopic particle relaxation rates that any near-equilibrium thermal perturbation
is essentially in the dc limit. Thus the thermal conductivity � in Eq. (58) is the ! ! 0 limit of
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�(!). For a medium with more than one component there is a boundary resistance e�ect where
the temperature drops discontinuously (on a macroscopic scale) across the boundary separating
component 1 from component 2 (this is often called the \Kapitsa resistance") so it is necessary to
keep the spatial variables (r; r0). More often, we are interested in a homogeneous medium, and can
use the homogeneous version

hŜi = ��rT (59)

where the vector and tensor subscripts have been dropped, and Ŝ is the volume average of ŝ.
The interesting conceptual problem is that the external driving �eld, �rT , cannot appear in

a real Hamiltonian for the system. It is a \non-mechanical" perturbation, so our previous method
for deriving a Kubo formula cannot work. This has led to a belief that the Kubo formula for the
thermal conductivity has a less rigorous basis than the one for the electrical conductivity. However,
in practise a very successful Kubo formula does exist, and a derivation can be given which has no
weak point except for the inevitable step of deciding how to think about a situation where thermal
equilibrium is de�ned locally rather than globally. Since temperature is an equilibrium concept,
de�ned by reference to a heat bath and giving rise to Boltzmann-weighted thermal averages, if a
spatially-varying temperature can be discussed, it must be attributed similar statistical properties.
This leads (inevitably, I think) to the local-equilibrium density matrix

�̂LE =
1

Z
exp

�
�
Z
d~r�(r)ĥ(r)

�
(60)

Here ĥ(r) is a Hamiltonian density operator which when integrated over space gives the Hamiltonian
H0,

H0 =
Z
d~rĥ(r): (61)

The temperature is a constant, T = 1=�kB, plus a small variation �T (r), so �(r) can be expanded,

�(r) = �

"
1 �

�T (r)

T

#
: (62)

Using Eqs. (62,61) in Eq. (60) gives

�̂LE =
1

Z
e��(H0+He� 0) (63)

which de�nes an \e�ective thermal perturbation"

He� 0 = �
1

T

Z
d~r�T (r)ĥ(r) (64)

which appears in the density matrix as if it were an actual external perturbation. It is convenient to
rewrite this replacing the Hamiltonian density by the heat current operator. The relation between
these operators is the condition of local energy conservation which must hold over macroscopic
distance scales,

@ĥ(r)

@t
= �~r � ŝ(r) (65)
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ĥ(r) = �
Z
dt~r � ŝ(r): (66)

Using Eq. (66) in Eq. (64), and integrating by parts, the e�ective perturbation is

He� 0 = �
1

T

Z
d~r

Z
dt~rT (r) � ŝ(r) (67)

He� 0 = �
V

T

Z 0

�1

dt~rT � Ŝ(t): (68)

The second form assumes a homogeneous temperature gradient. The time argument and limits of
integration are shown explicitly. The time integration ends at t = 0 which is the time when the
density matrix is needed. This has precisely the same form as the perturbing Hamiltonian Eq. (44)

in the electrical case, with the ~E �eld replaced by �~rT , and the electrical current density ĵ replaced
by ŝ=T .

The Kubo formula follows once we make a perturbative expansion of the density matrix to �rst
order in He�0. This can be done using another operator identity. De�ne a quantity

U(�) � e�H0e��(H0+H
0) (69)

dU

d�
= �

�
e�H0H 0e��H0

�
U(�): (70)

Integrate both sides over � from 0 to � to get

U(�) = 1�
Z �

0
d�H 0(�i�)U(�): (71)

Finally, solve iteratively for U(�) to �rst order in H 0,

�LE � �0 � �0

Z �

0
d�H 0(�i�): (72)

Now we can calculate the thermal conductivity which is the heat current density (hŜiLE in the local
equilibrium situation divided by the negative temperature gradient,

� =
V

T
tr
Z ��h

0
d�

Z 0

�1

dtŜ(t� i�)Ŝ(0): (73)

To put this in a more conventional form, the invariance under time translations permits us to subract
t from all the time arguments. Then as a new variable of integration, use �t. The result is

� =
V

T

Z ��h

0
d�

Z
1

0
dthŜ(�i�)Ŝ(t)i: (74)

This version of the Kubo formula is completely parallel to Eq. (56) in the electrical case.
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V. FLUCTUATION-DISSIPATION THEOREM

The \
uctuation-dissipation theorem" is a result which relates the linear response coe�cients �
(which describe, among other things, dissipative e�ects and the irreversible approach of a system
to equilibrium) to simpler correlation functions describing 
uctuations which occur in the system in
equilibrium. As a prototype correlation function C(t), we write

C(t) = hP̂ (t)Q̂(0)i: (75)

This must be related somehow to the response coe�cient Eq. (29)

�(t) =
i

�h
h[P̂ (t); Q̂(0)]i�(t): (76)

The relation is discovered by expressing the Fourier transform in a basis of exact eigenstates jni with
energy En of the system Hamiltonian H0.

C(!) =
Z
1

�1

dtei!tC(t) (77)

=
2�

Z

X
i;f

e��EihijP̂ jfihf jQ̂jii�(! + Ei � Ef)

where Z is the partition function. Doing the same for �(!) gives

�(!) =
Z
1

0
ei(!+i�)t�(t) (78)

= �
X
i;f

e��Ei � e��Ef

Z

"
hijP̂ jfihf jQ̂jii

! + i� + Ei � Ef

#

To make Eq. (79) look more like Eq. (78), we convert the energy denominators into delta functions
by taking the imaginary part. This only works if the numerators are real. When the operators P̂
and Q̂ are proportional to each other, as is most often the case, then the numerators are jhijQ̂jfij2

and therefore real. Let us assume that these numerators are real. Thus we get

Im�(!) =
�

Z

X
i;f

(e��Ei � e��Ef )hijP̂ jfihf jQ̂jii�(! + Ei � Ef) (79)

=
�(1� e��!)

Z

X
i;f

e��EihijP̂ jfihf jQ̂jii�(! + Ei � Ef )

Comparing Eqs. (78,80), we have the \
uctuation-dissipation theorem",

Im�(!) =
1

2�h
(1� e���h!)C(!): (80)

This is valid for any correlation function and corresponding susceptibility where the operators P̂ and
Q̂ are proportional. The next two sections contain applications of this theorem.
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VI. DENSITY RESPONSE; DIELECTRIC SCREENING; NEUTRON SCATTERING

Probably the most important application of linear response theory in condensed matter physics is
the response to an external �eld which couples to the electron density. The electron density operator
�̂(r) measures the electron density at point r:

�̂(r) =
X
i

�(r � ri): (81)

An external scalar potential Vext(r; t) will couple linearly to electron density:

H 0(t) =
Z
d~r�̂(r)Vext(r; t): (82)

The potential Vext could be for example e ~E � ~r from external capacitor plates, or �Ze2=jR(t) � rj
from a point charge Ze located at R(t). In linear approximation (i.e., accurate when Z � 1) the
system produces an electron density disturbance or screening charge ��ind in response,

h��ind(r; t)i =
Z
d~r0

Z t

�1

dt0�(r; r0; t� t0)Vext(r
0; t0) (83)

which de�nes the \density" susceptibility �. From Eq. (29),

�(r; r;0 ; t� t0) = �
i

�h
h[�̂(r; t); �̂(r0; t0)]i�(t� t0) (84)

where the minus sign occurs because the operator playing the role of Q̂ in Eq. (19) is ��̂ in Eq. (82),
while the operator P̂ is �̂. From the electron density susceptibility, the dielectric function can be
immediately calculated.

An important related correlation function is the density correlation function P (r; r0; t) de�ned as

P (r; r0; t) = h�̂(r; t)�̂(r0; 0)i (85)

which determines the probability of �nding an electron at point (r; t) if there was one at point (r0; 0).
The time Fourier transforms of P and � are related by the 
uctuation-dissipation theorem,

P (r; r0;!) = �
2�h

1� e���h!
Im�(r; r0;!) (86)

An application of these formulas is in scattering theory, especially neutron scattering. A neutron
couples to nuclear density, so we should now interpret the operator �̂ in Eq. (81) � as referring to
nuclear density. In Born approximation, which is very accurate for neutron interactions with matter,
the cross section for neutron scattering with energy loss ! and momentum loss ~q is the frequency
and wavevector Fourier transform of P (r; r0; t� t0), while the corresponding Fourier transform of � is
a form of vibrational Green's function. If the frequency ! is positive, this corresponds to a neutron
losing energy to the lattice, and the cross section can be written using Eq. (86)

d2�

d
d!
/ P (q; !) = �2�h[n(!) + 1]Im�(q; !) (87)

where n(!) is the Bose-Einstein occupation number 1=(exp(��h!) � 1). Negative values of the fre-
quency correspond to scattering with an energy gain. Again using Eq. (86), and the fact that Im�(!)
is odd in !, this can be written as

d2�

d
d!
/ P (q;�!) = �2�hn(j!j)Im�(q; j!j) (88)

Thus we obtain the usual Einstein population factors for absorption of a vibrational quantum (n(!))
and for stimulated emission (n + 1).
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VII. ELECTRONIC FRICTION ON A PARTICLE MOVING IN A METAL

Consider a particle of mass M located at time t and point R(t) in a metal. In a classical picture,
such as is used for example in a \molecular dynamics" simulation, this particle obeys the Newtonian
equation

M �R = �rRU(R;R1; : : : ; RN ) (89)

where Ri is the coordinate of one of the N \ordinary" atoms of the system, and R is the \special"
particle under consideration. For example, the special particle might be a proton in a Pd host, and
the other atoms are the palladium atoms. In such an equation, the electronic degrees of freedom
are all hidden in the adiabatic total energy U , which is the total energy of the system of proton,
palladium nuclei, and electrons, calculated with the nuclei all stationary.

In a metal, the Born-Oppenheimer (adiabatic) approximation is not guaranteed to be su�ciently
accurate, and in particular, it may happen that by inelastic collisions between the \particle" and the
electrons there is a signi�cant extra frictional damping not already accounted for in the adiabatic
Eq. (89). In such a case, the Langevin equation is available to simulate this additional friction,

M �R = �rRU(R;R1; : : : ; RN )�M� _R+ Fst(t) (90)

where � is a friction coe�cient, and Fst(t) is a \stochastic force", that is, a random force with time
average hFst(t)i = 0. This stochastic force is needed to keep the temperature of the system from
irreversibly decreasing to zero under the in
uence of the friction. The mean square magnitude of
Fst(t) is �xed by

hFst(t)Fst(t
0)i = 2M�kBT�(t� t0) (91)

An interesting question is how would one make the correct realistic choice of the friction coe�cient
�? We can use the techniques of linear response theory to answer this question, and in the process,
obtain a microscopic derivation of Eqs. (90,91). The correct treatment of friction turns out to replace
these results by more complicated ones where the friction is retarded in time. The interaction between
the proton and an electron, �e2=jR� rj, will be denoted Vpe(R� r). The force on the proton due to
all electrons in the system is

Fpe;tot(t) = �
Z
d~rrRVpe(R � r) (92)

�
���
h�̂(r; t)i0 + h��ind;AD(r; t)i+ h��ind;NON�AD(r; t)i+ [�(r; t)� h�(r; t)i]

���
:

The �rst two parts of this equation are the force which the proton feels due to the electronic charge
of the crystal undisturbed by the proton's presence, and the correction due to the proton's presence,
calculated in adiabatic approximation. Since the ions of the lattice are heavy compared to the
proton, their speeds of thermal motion are slow, and we assume that the adiabatic approximation is
su�ciently good for the �rst part. These �rst two parts are then already included in the Newtonian
Eq. (89). The third term represents the correction from the time-dependence of the proton motion.
Since the proton has a small mass, its thermal velocity is su�ciently large that the Born-Oppenheimer
approximation needs to be corrected. Since the correction is expected to be small, we will calculate it
in linear approximation. The last term (the one in square brackets) is quite interesting. The angular
brackets in the �rst three terms indicate a thermal ensemble average. This should give correctly the
time average of the electron density and the corresponding force on the proton. The actual density
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and force will 
uctuate around this time average in a way which we might imagine trying to calculate
by forward integration of the time-dependent Schr�odinger equation for the whole system, assuming
as a boundary condition some choice of many body wavefunction at some time in the past. This
calculation would be daunting, and the details of the precise time-evolution of 
uctuations should
not matter very much anyway for a proper understanding of the proton's motion. Therefore it may
be su�cient to model correctly the statistical behavior of this 
uctuating electron density rather
than its actual behavior. In the Langevin Eq. (90), the friction models the third term of Eq. (93)
and the stochastic force models the fourth.

From the previous section, we know how to represent the induced electron density which arises
from the presence of the proton, at least in linear approximation,

h��ind;TOT(r; t)i =
Z
d~r0

Z t

�1

dt0�(r; r0; t� t0)Vpe(R(t
0)� r0): (93)

The total induced density depends on the trajectory R(t0) of the proton at all previous times. In �rst
approximation, the electronic susceptibility decays exponentially as exp(�jt� t0j=� ) with some decay
time � which is similar to the time � in the conductivity formula ne2�=m. The reciprocal �h=� is a
lifetime-broadening which is typically at least as large as kBT , i.e. 25meV at 300K. This corresponds
to a su�ciently short time that we may perhaps replace R(t0) in Eq. (93) by R(t), that is, we may
make the adiabatic approximation. The correction to the adiabatic approximation h��ind;NON�ADi,
is then found by replacing Vpe(R(t0)� r0) in Eq. (93) by �V � Vpe(R(t0)� r0)� Vpe(R(t)� r0). It is
now convenient to introduce the following derivatives,

d

dt
�V = ~rRVpe(R(t

0)� r0) �
_~R(t0) (94)

�(r; r0; t� t0) �
d

dt0
�(r; r0; t� t0) (95)

where the last equation de�nes a new response function � whose time derivative is �. Using these
derivative expressions, we can write the non-adiabatic density response as

h��ind;NON�AD(r; t)i =
Z
d~r0

Z t

�1

dt0
d�(r; r0; t� t0)

dt0
�V (t0) (96)

= �
Z
d~r0

Z t

�1

dt0�(r; r0; t� t0)rRVpe(R(t
0)� r0) _R(t0):

where the time integration has been rearranged by integration by parts. Going back to Eq. (93), we
now have a formula for the non-adiabatic force on the proton,

Fpe;NON�AD = �M
Z t

�1

dt0�(R(t); R(t0); t� t0) _R(t0) (97)

M�(R;R0; t� t0) = �
Z
d~rd~r0rRVpe(R� r)

hhh
�(r; r0; t� t0)

iii
rRVpe(R

0 � r0) (98)

Clearly this is a frictional force, very similar to the phenomenological force �M� _R appearing in
the Langevin Eq. (90), except retarded in time. Also, there is an implicit trajectory-dependence
in the factors rRVpe(R(t) � r) which determine the end-points to which the \friction propagator"
�(r; r0; t� t0) gets integrated.
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When would it be valid to use the instantaneous friction of the phenomenological Langevin equa-
tion? The friction propagator � is related by a time derivative (Eq. (95)) to the density susceptibility,
and therefore has the same decay time � . During this decay time, the proton's position R and velocity
v = _R have changed by �R = v� and �v = F�=M respectively, where F represents the total force
felt by the proton. This force is the same in magnitude as the typical force on a valence electron in

a solid, that is, a few eV per
�

A. A good approximate formula is F � �F=a where �F is the Fermi
energy and a is the lattice spacing. The \implicit" trajectory dependence through rRVpe disappears
provided �R=a � 1; the velocity _R(t0) in Eq. (97) can be replaced by the instantaneous velocity
_R(t) provided �v=v � �F �=Mva� 1. The thermal momentumMv of the proton is 2��h=� where �
is the thermal DeBroglie wavelength. A factor �h2=Ma2 can be replaced by (m=M)�F where (m=M)
is the electron to proton mass ratio. The decay rate �h=� is of order kBT . Thus the criteria are

�R

a
� 1 or

m

M
�
2�a

�
�

kBT

�F
(99)

�v

v
� 1 or

�

2�a
�

kBT

�F
(100)

At 1000K the proton thermal wavelength is of order 0.5
�

A. The �rst criterion is well-satis�ed, but the
second is only marginal. However, if we are interested in superthermal protons (e.g., protons slowing
down from higher than thermal velocities, or protons with accidentally high energies attempting to
climb over saddle points in a di�usion process) then the appropriate value of � is even smaller, and
both criteria may be satis�ed. Then we recover the Langevin equation with the friction coe�cient
equal to

� =
Z t

�1

dt0�(R;R; t� t0): (101)

Now it is time to examine the last term of Eq. (93). The time-correlation of this force with itself
is

hFst(R; t)Fst(R
0; t0)i =

Z
d~r

Z
d~r0rRVpe(R� r)

hhh
h��̂(r; t)��̂(r0; t0)i

iii
rR0Vpe(R

0 � r0): (102)

The factor in square brackets in this equation can be written as the time transform of a frequency
dependent correlation function,

hhh
h��̂(r; t)��̂(r0; t0)i

iii
=
Z
1

�1

d!

2�
e�i!(t�t

0)P (r; r0;!) (103)

=
Z
1

�1

d!

2�
e�i!(t�t

0)

"
�
2�hIm�(r; r0;!)

1 � e���h!

#

where the 
uctuation-dissipation theorem Eq. (86) has been used. Similarly, the factor in square
brackets in the friction coe�ent Eq. (98) can be written as the time transform of the frequency
dependent friction propagator

hhh
�(r; r0; t� t0)

iii
=
Z
1

�1

d!

2�
e�i!(t�t

0)

"
�
�(r; r0;!)

i!

#
(104)

Eqs. (98 and 102-104) contain the relation between the time correlation of the stochastic force and
the retarded friction coe�cient, generalizing the Eq. (91) of the phenomenological Langevin theory.
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Under the conditions where Eq. (101) applies When this works, we can replace Eqs. (98,101, and
104) by

M� = �
Z
d~r

Z
d~r0rRVpe(R � r) lim

!!0

hhhIm�(r; r0;!)
!

iii
rRVpe(R � r0): (105)

At the same level of approximation, the correlation function in Eq. (104) decays rapidly to zero as
(1=2� ) exp(�jt� t0j=� ). For small � , this becomes �(t� t0). To determine the weight W of the delta
function, we do the time integral

W �
Z
1

�1

dthFst(R; t)Fst(R; t
0)i (106)

where the time-dependence of R;R0 are neglected. Using Eqs. (102,104) we obtain exactly 2M�kBT ,
the result of Eq. (91). This seems to be the microscopic justi�cation of the Langevin equation.
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