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Nanocrystalline nanowires (NCNW) are fragments of bulk crystals which are infinite in only one
direction, and typically have some rotational symmetry around this direction. Electron eigenstates
belonging to the symmetry labels (k, m) (wavevector and rotational quantum number) are discussed.
The rotational quantum number simplifies discussion of optical properties, and allows orbital mag-
netic effects. The simplest sensible model which is more complex than a one-dimensional chain is
solved. Methods are suggested for incorporating rotational symmetry into preexisting codes with
three-dimensional translations.

PACS numbers: 63.22.+m, 68.65.La

Introduction. In a 3-D crystal, the translation opera-
tors commute among themselves and with the Hamilto-
nian, but none of the point symmetry operators com-
mute with all translations. Therefore, except at spe-

cial ~k-points, the eigenstates, having been labeled by the

eigenvalue label ~k of translations, can acquire no further
symmetry labels from rotations, and no further reduction
of the secular equations can occur. In a nanocrystalline
nanowire, translation symmetry is only along the z-axis.
A nanowire may also have some rotational symmetry, by
angles 2π/ρ, around the z axis. These rotations (both
simple and screw rotations) commute among themselves
and with the z translations. Therefore, eigenstates of op-
erators like the Hamiltonian can be chosen to be simul-
taneous eigenstates of both translations and rotations.
The rotational quantum number m joins the k-label for
z-translations in labeling eigenstates and providing selec-
tion rules. This relatively obvious observation has been
made and used before1, but less often than one would
expect, possibly because it has been hard to disentangle
from more complex symmetry considerations needed in
carbon nanotubes2–4.

This paper is about single-particle electron states, and
methods and benefits of labeling them with m as well as
k. Well tested and documented computer codes, devel-
oped for 3-D crystals, are often used for nanowires by the
simple expedient of making virtual parallel copies of the
wire, periodically, in the directions transverse to the wire,
separated far enough that they do not interact. This sep-
aration implies that the wavevector components kx, ky,
perpendicular to the wire, encode irrelevant information
about phases of states on adjacent non-interacting wires.
Setting kx = ky = 0 is normal, but rotational symme-
try is not yet regained. One purpose of this note is to
show that the modification of existing codes, needed to
exploit rotations, is not very large, and may be worth im-
plementing to save time in matrix diagonalization, and is
definitely worth adding after diagonalization, to enable
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symmetry-related properties to be more easily seen and
discussed.

Unitary transformation. It is useful to start with a
formal observation. If the Hamiltonian matrix H is ex-
pressed in an orthonormal basis of states |p〉, then there
exists a unitary transformation U, depending only on the
basis set and on symmetry, such that the transformed
matrix H

′ = UHU
† is block-diagonal. The different blocks

are labeled by different values of the quantum numbers
(k,m), where exp(ikc) is the eigenvalue of translation by
c along z, and exp(imφ) is the eigenvalue of rotation by
φ = 2π/ρ around z. The states |p〉 may be local functions
or extended functions like plane waves. First consider
local functions. The rotation U in basis function space
transforms the basis to a set of orthonormal symmetrized
functions |kmp〉. The transformation is

|kmp〉 =
1√
Nρ

∑

L

ρ−1
∑

λ=0

e−ik`e−imλφ
T

L
R

λ|p〉 (1)

where |p〉 is localized on layer ` = 0. After L z-
translations by c, and λ rotations by φ = 2π/ρ, the site
of T

L
R

λ|p〉 has been raised by ` layers. The unitary ro-
tation matrix is

U =
∑

kmp

|kmp〉〈kmp|p〉〈p| =
∑

km

U(km). (2)

The different rows of U belong to particular choices of
(km). For each (km) there are multiple orthogonal rows,
which are grouped by (km) such that U has a layered
structure, a block of rows (designated U(km) for each
(km). The submatrices U(km) are not square, but can
be filled up to square if convenient by adding rows of
zeros. The Hamiltonian blocks can be labeled H

′(km),
and are found from the original Hamiltonian by

H
′(km) = U(km)HU

†(km). (3)

The off-diagonal submatrices U(k′m′)HU
†(km) vanish

unless k = k′ and m = m′.
Once the eigenstates Ψ′ of this new matrix H

′ are
found, the eigenstates Ψ = U

†Ψ′ of H are available. The
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FIG. 1: On the left are the six identical atoms of the primitive
translational unit of the smallest 6-fold nanorod. Pale blue
represents atoms stacked at z = c/2 relative to the dark blue
atoms at z = 0. One can also imagine the dark and pale blue
to represent s-orbitals on the 6 basis atoms, with alternating
sign arising either from having k = 0 and m = 3, or alter-
nately, m = 0 and k = 2π/c. Under full lattice translations,
k = 2π/c is equivalent to k = 0, but under translations by
c/2, a sign change occurs betweem alternate half-layers.

unitary matrix U is easy to construct. If |p〉 is a state
localized on an atom in layer zp and in angular sector
φp, its matrix elements are

〈kmp|p〉 = (Nρ)−1/2e−ikzpe−imφp . (4)

If |p > is a plane wave, then it is already an eigenstate of
the z translation, so the transformation, while simpler,
requires careful discussion which will be given soon.

hcp example. The ideas are most easily explained by
reference to an example. Consider the hcp lattice, as is
found for example, in the hcp crystal structure of ele-
ments like Zn, and also in the wurtzite crystal structure
of binaries like ZnO. A minimal fragment of this lattice
is shown in Fig. 1. The lattice sites of the bulk crystal

are ~R` = `1~a1 + `2~a2 + `3~a3, with ` = (`1, `2, `3) a trio of
integers. The primitive lattice translations are

~a1 = a(1/2,−
√

3/2, 0)

~a2 = a(1/2,
√

3/2, 0)

~a3 = c(0, 0, 1). (5)

The atoms of the crystal are at sites ~R` + ~τi, where
the first atom position ~τ1 is arbitrary, and ~τ2 − ~τ1 =
(1/3)~a1 + (2/3)~a2 + (1/2)~a3. The hcp structure has two
identical atoms at these two sites, while wurtzite has two
additional atoms of opposite charge at positions displaced
by uc in the z-direction, with u ≈ 3c/8. The nanowire is
infinite in the z direction (c axis) but terminates in the x
and y directions. A perfect nanocrystalline nanowire has
perfect translational symmetry in the z-direction. The
x − y plane termination is independent of z. Let us as-
sume some rotational symmetry around the growth axis.
For hcp structure, the rotational symmetry can be a 3-
fold simple axis, if the symmetry axis is chosen through
an atom (~τ1 = 0), a 2-fold screw axis, if the symmetry
axis is chosen half-way between atoms (~τ1 = −~τ2), or a
6-fold screw axis, if the axis of symmetry passes through
vacant hexagonal sites (~τ1 = (1/3)~a1 + (2/3)~a2.) The

6-fold case is shown in Fig. 1, which also shows some
symmetrized local basis functions.

Plane wave basis. Suppose the orthogonal basis is
plane waves. The translational unit has height c in the z-
direction, but in the transverse directions, the distance is
the artificial superlattice separation of the parallel lattice
of nanowires. If the superlattice translations are multi-

ples of the hcp lattice translations, ~R1 = F~a1, ~R2 = F~a2,
then the rotational symmetry of the nanowire is pre-
served in the superlattice. The distance Fa should be
larger than the nanowire radius by at a minimum sep-
aration of 5 to 10 Å. The reciprocal lattice vectors are

then ~Gn = n1
~G1 + n2

~G2 + n3
~G3, and

~G1 = (2π/Fa)(2/
√

3)(
√

3/2,−1/2, 0)

~G2 = (2π/Fa)(2/
√

3)(
√

3/2, 1/2, 0)

~G3 = (2π/c)(0, 0, 1). (6)

The Bloch states of the superlattice are |~k, j〉 =
∑

GAj(~k+ ~G)|~k+ ~G〉. The limit of an isolated nanowire
is F → ∞, and the plane wave expansion becomes a con-

tinuous transform for transverse |~k + ~G〉-vectors. The
artificial superlattice of nanorods can be thought of as a
device for making a symmetric discretization of this con-
tinuous Fourier transform. The translational eigenlabel
~k has a z-component of typical magnitude |kz| ≤ π/c,
and small transverse components |k⊥| ≤ π/Fa. These

transverse components of ~k just fix phase relations on
irrelevant parallel nanowires, and should not alter the
wavefunctions on the central nanowire. The factor F is
sufficiently large, and the corresponding transverse size
of the Brillouin zone is so small, that transverse compo-

nents of ~k in the Brillouin zone are essentially 0 anyway.

Now the orthonormal basis set |~k + ~G〉 needs to be
symmetrized. The reciprocal lattice vectors come in lay-

ers ~G = ( ~Q,Gz), where ~Q is a 2-vector in the x−y plane,

and Gz is 2πγ/c, with γ an integer. The non-zero ~Q’s
come in symmetry-equivalent sets, or stars, of ρ vectors

R
λ ~Q. For each separate star s of basis functions |~k+ ~G〉,

we construct a transformed orthonormal basis |kmsGz >
using

|kmsGz〉 =
1√
ρ

∑

λ

e−imλφ|(Rλ ~Q, k +Gz)〉 (7)

From this we read off the matrix elements of U, namely

〈kmsGz |U|~k + ~G〉 =
1√
ρ
e−imφ~G (8)

There are also basis functions with ~Q = 0, that is, com-
posed from reciprocal lattice vectors with n1 = n2 = 0.
These already transform according to them = 0 symmet-
ric representation of the rotations, so the relevant entries
in the matrix U are just diagonal 1’s in the m = 0 block.

The possible use of this is that a pre-existing plane
wave code can be modified as follows. The Hamiltonian
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FIG. 2: Energy bands of the nanowire shown on the left in
Fig. 1. A single s-orbital per site is assumed, with hopping
matrix element −t. Energy is vertical in units of t. The
horizontal line is the Fermi energy at half-filling (one electron
per atom.) The red curves show how the m = ±1 and ±2
levels split in a longitudinal field with 0.1 flux quantum per
hexagonal cross-section.

matrix is set up as usual in the |~k+ ~G〉 basis. The ~k-vector
is (0, 0, k), that is, kx = ky = 0. The matrix U is com-
puted once and stored for all subsequent iterations. The
block-diagonal Hamiltonian submatrices are then found
by matrix multiplication. The relevant eigenvectors are
then computed for the submatrices. Finally, the inverse
transformation recovers the wavefunctions in their un-
symmetrized plane-wave form since this form is needed
for solving Poisson’s equation and all the subsequent nor-
mal steps of the otherwise unaltered code. Modern plane-
wave density-functional (DFT) codes would not necessar-
ily be improved by this, since iterative multiplication Hψ
provides a Lanczos-type method of finding low energy
states without need to construct the matrix H. These
codes exploit the fact that kinetic energy is diagonal in ~k-
space and potential energy in ~r-space. Fast Fourier trans-
forms are needed to make this efficient, and require un-
symmetrized plane waves to be repeatedly transformed.
The additional multiple U

†ψ multiplications, even though
fast, may add too much computational overhead.

In principle, the same symmetrization procedure works
in two other situations, namely (1) a finite nanocrystal or
cluster (sometimes called a colloidal quantum dot) with
high symmetry, and (2) a symmetrical point defect in a
bulk crystal. A cluster code would, of course, usually
have local basis functions, and symmetrization is usually
built in. However, bulk codes can also be used, with an
artificial superlattice. The Brillouin zone is small in all

directions, and the translational eigenlabel ~k is needed

only for ~k = 0. The corresponding unitary transfor-
mation follows from the same ideas as for a nanowire.
Such a symmetrized bulk code was recently constructed
by Chang et al.5 for supercell defect calculations.

Minimal nanowire model. As a toy model for pedagog-
ical purposes, return again to the hcp minimal nanowire
shown in Fig. 1. As basis functions, a minimal set of lo-
cal orbitals can be used. The figure shows the schematic
appearance of the symmetrized |s〉-orbital in panel (a),
belonging to rotational quantum numberm = 0 orm = 3

depending on the algebraic signs attributed to the two
shades of blue. The other two panels show how m = 0
symmetrized versions of |px〉 and |py〉 orbitals are con-
structed. These symmetric orbitals can then be dis-
tributed by z-translations with whatever phase factor
exp(ikz) is appropriate.

To be completely simple, consider the case of a single
|s〉-orbital per site. In nearest-neighbor two-site approx-
imation, each orbital overlaps the orbitals on the two
atoms in the same plane z = z0, and on two atoms each
in the planes directly above and below, z = z0 ± c/2,

where c/a =
√

(8/3) gives all 6 neighbors the same sep-
aration, and the same Hamiltonian overlap matrix ele-
ment Hssσ = −t. Using the symmetrized states, Eq. 1,
the Hamiltonian is fully diagonalized, with diagonal ele-
ments

ε(km)

t
= −2 cos

(

2πm

3

)

− 4 cos

(

kc

2

)

cos
(πm

3

)

(9)

These energy bands are plotted in Fig. 2. The pic-
ture is simplified by unfolding to a double Brillouin
zone, using the “modular” symmetry ε(k,m + 3) =
ε(k + 2π/c,m) which was discussed in a previous paper
about vibrations6. This is a particular case of a general
symmetry of states with screw rotation. The phase mod-
ulation obtained from m→ m+ ρ/2 is the same as that
obtained from k → k + 2π/c.

Notice that the m = 0, 3 levels overlap the m = ±1,±2
levels. There is no gap in the spectrum, so for one elec-
tron per atom or any other partial filling, the model de-
scribes a 1-d metal. However, the Fermi-level crossings
kF,m are not related by simple ratios, so the metal may
be less susceptible than a linear chain to instabilities such
as the Peierls distortion7.

Optical properties. Just as in clean solids, translational
symmetry gives a ∆k ≈ 0 selection rule for optical ab-
sorption. Just as in molecular physics, the rotational
quantum number gives dipole selection rules ∆m = 0
for light polarized along the symmetry (z) axis, and
∆m = ±1 for light polarized transverse (x or y direc-
tions.) In a metallic nanowire, there is a ∆m = 0 transi-
tion possible from a state (kF −δ,m) just below the Fermi
level to a state (kF +δ,m) just above, where the wavevec-
tor 2δ of the photon is small and can be approximated of-
ten by zero. The energy of the transition is ω = 2δv(km),
where v(km) is the group velocity, dε(km)/d(h̄k). In
a nanowire long enough that propagation is interupted
by collisions, that is, not ballistic, the small ω is broad-
ened to 1/τ in the familiar Drude fashion, where 1/τ is
the collision rate. These Drude transitions are only al-
lowed for z-polarized light. To light polarized transverse,
a metallic nanowire looks like a semiconductor, with a
finite gap to optical excitation, from a state (k,m) some-
where below the Fermi energy to a state (k,m ± 1) of
different energy somewhere above the Fermi energy. For
the minimal nanowire shown in Fig. 2, the minimum en-
ergy transverse excitation energy is h̄ω ≈ 1.88|t|, and the
maximum transverse single electron-hole pair excitation
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FIG. 3: The minimal hcp nanowire in a longitudinal magnetic
field B. Peierls phase factors exp(iβ/6) are attached to tight-
binding matrix elements coupling atoms as shown by arrows.
The factor β = 2πΦ/Φ0 is the flux B ×

√
3a2/2 through a

hexagon. When the phases of any closed loop are added, the
result is 2πΦloop/Φ0.

energy is h̄ω ≈ 2.85|t|. It seems likely that non-metallic
transverse response will remain even when there is no
rotational symmetry and therefore no transverse rota-
tional selection rule ∆m = ±1. Interband scattering can
certainly allow Drude response to spread to transverse
response channels, but in a clean nanowire, this would
probably not happen. In any event, use of rotational
symmetry gives a simplified understanding of nanowire
optical response.

Orbital moment. The states m = 0, 3 do not carry cir-
culating currents, but m = ±1 and ±2 do. To see this,
consider the effect of an applied magnetic field along the
z axis. The B-field is described by a modification of
the tight-binding matrix elements known as the “Peierls
substitution”8,9. Each matrix element tij is multiplied by

the phase exp(iAij) where Aij = (2πe/h)
∫ Rj

Ri
d~s · ~A, and

where ~A is the vector potential. There is a particularly
symmetric gauge where the phases Aij are all equal to
β/6, where β is 2π times the flux Φ through a hexagonal

cross-section, divided by Φ0 = h/e, the flux quantum.
Because of this high symmetry, the Hamiltonian contin-
ues to be diagonal, with energy eigenvalues modified to

ε(km,B)

2t
= − cos

(

2πm

3
+
β

6

)

−2 cos

(

kc

2

)

cos

(

πm

3
+
β

6

)

(10)
When multiples of 6 flux quanta thread the hexagon,
each loop has an integer number of flux quanta, and
the energy levels return to their zero field values. If
we use the nearest-neighbor lattice spacing of elemen-
tal Zn, a=2.665Å, the periodicity in B occurs at 4×105

T, four orders of magnitude larger than lab fields. For
weak fields, the m = ±1 and ±2 levels split linearly. The
k = 0, m = ±1 levels split by ±µB, where µ/µB =
t/(2h̄2/3ma2), a number of order 1, µB being the Bohr
magneton. The result for a field 0.1 Φ0 per hexagon,
is shown in Fig. 2. The splitting in the m = ±2 level
changes sign at k = 2π/3c.

Apart from the interesting k and m-dependent
anisotropic orbital magnetism, the existence of an ro-
tational quantum number m has other technical impli-
cations. Cooper pairing, for example, will involve (k,m)
pairing with (−k,−m). Chang et al.1 have already solved
exciton problems in nanowires using the (k,m) quantum
numbers. Scattering selection rules will have not just k
conserved modulo 2π/c, but also m conserved modulo ρ.
Real nanowires will be perturbed away from the ideal
symmetry assumed here. Nevertheless, model calcula-
tions built on use of this symmetry should be very useful
for technical simplifications of theory, even for non-ideal
nanocrystalline nanowires, in cases where the global sym-
metry is not the prime determinant of behavior.
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