
Chapter 6

ELECTRON TRANSPORT

P. B. Allen

1. INTRODUCTION

A voltage gradient (�rF ¼ E) drives an electron current (j ¼ sE; where s is the
conductivity). Many mechanisms of electron transport are known.

(1) Electronic quasiparticle propagation, the first known mechanism, studied by
Drude [1], and improved by Sommerfeld [2,3], Bloch [4], Landau [5], and others.
The current is given by

j ¼ �
e

V

X

k

vkF ðkÞ (1)

where F ðkÞ is the distribution function (i.e. the non-equilibrium occupation) of
the quasiparticle state k (short for: k; n;s) which has energy �k and group
velocity vk ¼ @�k=@ð_kÞ; and V the sample volume.

(2) Quasiparticle tunneling through barriers.
(3) Supercurrent flow in superconductors. The (Landau–Ginzburg) order param-

eter is c ¼
ffiffiffiffiffi
nS
p

expðifÞ; and the current, with no magnetic field, is

jS ¼ �
ð2eÞ_

2mi
ðc�rc� crc�Þ ¼ �2enS_rf=m (2)

where it is assumed that the superfluid density nS is spatially uniform.
(4) Intrinsically diffusive currents in dirty alloys, metallic glasses, etc.
(5) Hopping currents in dilute electron systems where states are localized by (i)

trapping at localized defects, (ii) Anderson localization at band tails in disor-
dered media, or (iii) polaronic self-trapping in insulators.
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(6) Separate propagation of charge and spin in 1D metals (‘‘Luttinger liquids’’).
(7) Collective sliding of charge-density waves when incommensurate distortions

open a gap in a metal.

This article will focus on examples where mechanisms can be clearly identified. Two
other constraints are imposed. First, magnetic field effects (Hall effect, magneto-
resistance, etc.) are excluded, for no good reason except to allow room for other
things. Second, if an effect (like Anderson localization, or ‘‘weak localization’’)
occurs in 3d bulk materials, and occurs in lower dimension in altered form, then
only the 3d version is included here, for the same reason.

Transport is a subject of greater breadth and depth than can be covered in any
one volume, let alone chapter. Thanks first to ‘‘mesoscopic’’ physics, and now, to
‘‘nanoscience,’’ the field of transport is rapidly expanding and evolving. This chap-
ter has three aims. First, to illustrate the breadth and beauty of the subject. Second,
to illustrate how techniques from electronic structure theory are used to explain or
predict values of transport coefficients such as electrical resistivity. Third, to guide a
reader through some of the theoretical notions currently evolving as nanoscale
research changes the way we think about these things.

2. CONDUCTIVITY

The conductivity s is the usual starting point. Let there be an electric field varying
slowly in space and sinusoidally in time, EðtÞ ¼ E cosðotÞ: Then a bulk solid will
respond to first order with an electrical current

jaðtÞ ¼ sð1ÞabEb cosðotÞ þ sð2ÞabEb sinðotÞ (3)

To simplify, the tensor notation sab will often be condensed to s with implicit rather
than explicit tensor aspects. Equation (3) is equivalent to jðtÞ ¼ Re sðoÞEe�iot

� �
;

with a complex conductivity s ¼ sð1Þ þ isð2Þ whose real and imaginary parts denote
in-phase (dissipative) and out-of-phase (reactive) response to the E field. I will use
the standard Fourier conventions

EðtÞ ¼

Z 1

�1

do
2p

EðoÞe�iot and EðoÞ ¼
Z 1

�1

dtEðtÞeiot (4)

to relate time to frequency; jðtÞ and sðtÞ have the same connection to jðoÞ and sðoÞ:
Since jðtÞ and EðtÞ are real, and since jðoÞ ¼ sðoÞEðoÞ; it is necessary that EðoÞ obey
Eð�oÞ ¼ E�ðoÞ and similarly for jðoÞ and sðoÞ:

The time-domain relation between j and E is

jðtÞ ¼

Z 1

�1

dt0sðt� t0ÞEðt0Þ (5)

Thus, sðtÞ has the meaning that it gives the current at time t in response to an
impulsive unit E-field Eðt0Þ ¼ dðt0Þ: ‘‘Causality’’ is the statement that if EðtÞ is zero
until it is ‘‘turned on’’ at time t ¼ 0; then jðtÞ must also be zero for times to0: Thus
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sðtÞ must vanish for negative t; from which the Fourier relation Eq. (4) becomes
sðoÞ ¼

R1
0 dtsðtÞ expðiotÞ: Now let us regard sðoÞ as a function of a complex o:

When Im½o�40 (that is, in the upper half o-plane) the integral converges abso-
lutely, permitting interchange of derivative and integral from which follows
@s1=@o1 ¼ @s2=@o2 and @s1=@o2 ¼ �@s2=@o1: These are the Cauchy–Riemann
equations which confirm that sðoÞ is analytic in the upper-half o-plane. This is the
basis for the Kramers–Kronig integral relations between real and imaginary part of
sðoÞ for real o:

Consider the Drude formula [1], originally proposed on classical grounds, for the
conductivity of metals:

sDrudeðoÞ ¼
ie2ðn=mÞeff
oþ i=t

(6)

The factor ðn=mÞeff is discussed later, see Eqs. (26) and (55). For simple metals,
ðn=mÞeff is fairly close to n=m; where n is the valence electron density and m the free
electron mass. The electron charge is �e: Unlike these parameters with fixed clas-
sical meaning, t is a phenomenological parameter indicating the time between the
collision events which allow electrons to reach a steady-state current. Note that
sðoÞ has a pole at o ¼ �i=t; that is, in the lower part of the complex o-plane. By
Fourier inversion we find

sDrudeðtÞ ¼ e2
n

m

� �

eff
e�t=tyðtÞ (7)

where yðtÞ is the unit step function, zero for to0 and 1 for t40: The real part of
s(o) is a Lorentzian, with conserved spectral weight

Z 1

�1

dosð1ÞDrudeðoÞ ¼ pe2
n

m

� �

eff
but

Z 1

�1

dosð1ÞexactðoÞ ¼ pe2
ntotal

m

� �
(8)

Both of these are unaffected by the phenomenological parameter t: The second
version, for the exact s; is the ‘‘f -sum rule.’’ It is equivalent to the statement that
sðt ¼ 0þÞ; which is the current just after a unit pulse EðtÞ ¼ dðtÞ has been applied, is
given by the classical constant ntotale

2=m; where ntotal includes core as well as valence
electrons, and the integral includes ultraviolet and x-ray regions of the spectrum. In
the limit of an infinitely sharp pulse and zero elapsed time, electrons have not yet
responded to anything other than the E-field. They do not notice the positive nuclei
or the Coulomb repulsion with each other. Thus the sum rule is true for any system,
molecule or extended, insulator or metal, crystal or glass.

Now consider the experimental results [6] for copper, the prototype ordinary
metal, shown in Fig. 1. The dielectric ‘‘constant’’ �ðoÞ is defined by � ¼ 1þ 4pP=E

where the polarization P is related to current j by j ¼ @P=@t: Therefore, we have
�ðoÞ ¼ 1þ 4pisðoÞ=o; and �ð2Þ ¼ 4psð1Þ=o: The Drude Lorentzian, centered at o ¼
0; has a strength measured in terms of the ‘‘Drude plasma frequency’’ o2

P ¼

4pe2ðn=mÞeff : Theory [7] gives _oP ¼ 9:1 eV: This can be compared with the free
electron value, 10.8 eV, which is based on a simplified model of 1 rather than 11
valence electrons per Cu atom. The Drude part of sðoÞ becomes quite small for
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photon energies _o as high as 2 eV. At higher photon energies, s1 increases,
indicating additional non-Drude currents, which are caused by electrons making
quantum transitions from d-states not far below the Fermi energy EF into s-states
above the Fermi energy, with a conserved wavevector k: The f -sum Eq. (8) is
approximately divided into spectral weight in the Drude region below 2 eV, and
spectral weight from interband transitions. As temperature T changes, the spectral
weight in the Drude region is conserved. The formula for ðn=mÞeff needs a treatment
of the energy bands, discussed in Section 4.2 from a quantum approach, and then
discussed again from a semiclassical point of view in Section 6.2. Although the
interband part of sðoÞ is normally classified as ‘‘optical properties’’ rather than
‘‘transport,’’ nevertheless, there is no truly fundamental distinction, and under-
standing of low-o transport requires some understanding of high-o behavior.

3. CONDUCTANCE VERSUS CONDUCTIVITY: THE POINT

CONTACT

For homogeneous bulk matter, the electrical properties are characterized by the
intrinsic conductivity s ¼ 1=r of the material. For other cases, conductance G ¼

1=R is the appropriate parameter. Figure 2 illustrates the reason.

Fig. 1. Measured optical properties of Cu metal at three temperatures [6]. Interband tran-

sitions set in above 2 eV. At lower frequencies, the tail of the Drude part varies with tem-

perature. The inset is a schematic of the real part of the Drude conductivity sðoÞ; Eq. (6) at
three temperatures.
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In the usual bulk case, the conductance is G ¼ sA=L where s is an intrinsic
property, A the cross-sectional area of the conductor, and L the length. But in panel
(b) of Fig. 2 (a model for a ‘‘point contact’’), the conductance is limited by the
orifice of diameter D: The spatial variation of the potential V ðrÞ must be solved self-
consistently. Maxwell [8] solved this problem under the assumption of a local re-
lation jðrÞ ¼ sEðrÞ between current and field, where s is the conductivity of the
homogeneous ‘‘bulk’’ material. He obtained GM ¼ Ds: The resistance RM ¼ 1=Ds
is dominated by the constriction; the remainder (the ‘‘electrodes’’) adds a series
resistance R ¼ L=As� 1=Ds) which vanishes in the limit of large dimensions L�

D and A=L� D: In such a case, the conductivity does not describe transport
through the system and it is necessary to study conductance.

The local relation assumed by Maxwell holds when the mean electron free path ‘
(equal to vFt where vF is an average Fermi velocity) is small compared to the
diameter D of the constriction. The problem becomes more interesting in the op-
posite limit. Because of the long mean-free path, the current at point r depends on
the E-field at points r0 where the value of E is different. That is, current and field are
related non-locally by jðrÞ ¼

R
dr0sðr� r0ÞEðr0Þ where the non-local conductivity sðrÞ

has range ‘: Sharvin [9] found when ‘=D� 1 the smaller conductance GS ¼

1=RS ¼ GMð3pD=16‘Þ: Sharvin’s answer can be written

G ¼ G0½Ack
2
F=4p� where G0 ¼ 2e2=h (9)

where Ac is the area of the constriction. The factor 2e2=h ¼ G0 ¼ 0:775� 10�4 O�1

is the ‘‘quantum unit of conductance,’’ while the second factor is the number of
quantum ‘‘channels’’ that can carry current through the orifice. Consider for ex-
ample a square orifice of side d: The spacing of k-states (e.g. sinðkxxÞ sinðkyyÞ)
whose nodes are on the boundaries of the orifice is p=d in the directions x and y in
the plane of the orifice. Counting the number of such states which are occupied and
lie in the quarter circle jðkx; kyÞjokF yields the second factor ½Ack

2
F=4p�: The cross-

over between the Maxwell and Sharvin limits was studied by Wexler [10] and
Nikolic and Allen [11]. They found the interpolation formula,

R ¼ RS þ gðD=‘ÞRM (10)

V

A

(a) (b)

D

Fig. 2. (a) The usual four probe geometry for measuring resistivity of a bulk material. The

voltmeter draws negligible current and thus does not disturb the electrical potential distri-

bution. (b) An idealized orifice of diameter D in an otherwise bulk sample. For D small

compared with the sample dimensions, the resistance is dominated by the alteration of

electrical potential in the vicinity of the orifice. This is a model for a ‘‘point contact.’’
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where the numerical correction gðxÞ is fitted by the Padé approximation g ¼
ð1þ 0:83xÞ=ð1þ 1:33xÞ:

Sharvin’s answer is only valid if the number of channels is large. When the
dimensions of the channel become comparable to the Fermi wavelength, so that the
number of channels is of order one, the size quantization of wavefunctions trans-
verse to the channel results in the conductance G being quantized in approximate
integer units of G0: This effect, shown in Fig. 3, was first seen by van Wees et al.
[12,13] and Wharam et al. [14], using devices made from a ‘‘two-dimensional elec-
tron gas’’ (2deg). Long mean-free paths are available near interfaces in
GaAs=Al1�xGaxAs ‘‘quantum well’’ structures. Metallic gate electrodes deposited
above the 2deg provide a way to tune the width of a constriction, known as a
‘‘quantum point contact.’’

There is a very simple argument which gives the quantized conductance G ¼ nG0;
and which will be used as a starting point for the discussion of the Landauer
formula in the next chapter. Let the gate potential at the gate axis y ¼ 0 of
Fig. 3 be modeled as V ðx; y ¼ 0Þ ¼ V 0 þmo2

0x
2=2: Near the constriction, the

wavefunctions in effective mass approximation are expðikyyÞHnðxÞ expð�x2=2x2
0Þ;

that is, propagating in the y direction and harmonically confined in the x direction.
The energy levels are eV0 þ ðcþ 1=2Þ_oþ _k2

y=2m�: The integer cX0 is the ‘‘chan-
nel index.’’ Inset (b) of Fig. 3 shows the occupied levels for a gate voltage near
�1:8V; where three sub-bands in the constriction are partly occupied. The inset also
indicates that a small source-drain bias has been applied, mL � mR ¼ �eVSD; where
L and R refer to y40 and yo0: The current through the constriction is caused by
ballistic propagation. We just have to count the imbalance between left- and

Fig. 3. Quantized conductance. The inset shows schematically the gate electrodes deposited

in the insulating layer above a 2d electron gas (2deg, or GaAs quantum well). Varying the

gate potential causes a variable width constriction for electrons of the 2deg. This device is

called a ‘‘quantum point contact’’ (from van Wees et al. [12], [13]).
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right-propagating states.

I ¼
2

L

X

c

X

k

ð�evkcÞF ðkcÞ (11)

where the non-equilibrium occupancy is F ðkcÞ ¼ f ð�kc � mþ signðvkcÞDm=2Þ and
f ð�kc � mÞ is the equilibrium Fermi–Dirac function of the state with longitudinal
wavevector k and channel c: Left- and right-propagating states have Fermi levels
shifted up and down by Dm=2 ¼ ðmL � mRÞ=2; and the factor of 2 is for spin de-
generacy. For each channel, k is quantized in a fictitious box �L=2okoL=2 in the
y direction with the orifice at the center. An occupied state transports charge �e

through the orifice in time L=vkc: The box is long enough such that the spacing
Dk ¼ 2p=L between k states is small. Convert the sum

P
k into an integral

ðL=2pÞ
R
dk; and convert the integration step dk into d�kc=_vkc: The factors of

velocity vkc cancel, so each channel that intersects the Fermi level makes the same
contribution. Thus we get

I ¼
�2eNc

h

Z
d�½f L � f R� ¼ G0NcVSD (12)

where Nc is the number of channels intersecting the Fermi level. Each occupied
propagating sub-band gives a current G0VSD which increases ohmically with jmL �

mRj: At gate voltages less than �2:2V; the upper (y40) and lower (yo0) halves of
the 2deg are decoupled, and G is essentially zero. At higher gate voltages, more and
more sub-bands become partly occupied, and the conductance rises in steps of
height G0 ¼ 2e2=h each time a new sub-band dips below the Fermi level.

One may ask, what is the source of resistance 1=G in this case where there is no
evident source of dissipation? Note that the conductance does not depend on the
longitudinal size L which is the total path length of current flow, so that the dis-
sipated heat per unit volume goes to zero in the large size limit. The non-zero value
of 1=G should be considered a ‘‘contact resistance’’ between the narrow ‘‘channel’’
and the macroscopic electrodes. De Picciotto et al. [15] have verified that a 4-
terminal resistance measurement on a ballistic quantum wire gives an inherent
resistance of zero, so the quantum resistance 1=NCG0 is safely assigned to the
contacts which were outside their voltage probes.

The details of coherent quantum flow in a ballistic quantum point contact were
imaged by Topinka et al. [16], giving a most beautiful visual verification of the
coherent electron states in the different channels.

The point contact turns out to be a useful probe, as Sharvin anticipated.
In common with other junction devices, it permits a significant bias DV across a
short channel, and thus a much larger E-field than can be achieved in a bulk
conductor. Further, the small transverse dimension makes less stringent demands
on microfabrication than does a larger area ‘‘planar’’ junction. Section 5 gives an
example.
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4. KUBO AND OTHER FORMULAS

In this chapter, some of the basic formulas [17] of transport theory are summarized
and discussed.

4.1. Kubo Formulas

We consider an applied field E ¼ �ð1=cÞ@A=@t; with monochromatic frequency-
dependence E ¼ ðio=cÞA: The current operator is

ĵtot;a ¼ ðine2=moÞEa þ ĵa,

ĵa ¼ �
e

m

X

i

pia ð13Þ

where pi is the momentum operator for the ith electron. The first term of ĵtot is the
‘‘diamagnetic’’ part related to the substitution pi ! pi þ eAðri; tÞ=c: The Hamilton-
ian of the system is

H tot ¼ H þHext,

Hext ¼ �ĵ � A=c ¼ ði=oÞĵ � E ð14Þ

where the ‘‘unperturbed’’ part H contains all the equilibrium properties of the
interacting system. We want to calculate the current trr̂tot ĵtot;a to first order in E:
The density matrix r̂tot is perturbed away from its equilibrium value r ¼
expð�bHÞ=Z by the field, and we need to know the correction dr̂ to first order in
E: First-order time-dependent perturbation theory for dr̂ can be written in operator
language using standard field-theoretic methods [18,19] as

dr̂ðtÞ ¼ �
i

_
e�iHt=_

Z t

�1

dt0½Hextðt
0Þ; r̂�eiHt=_ (15)

where the time dependence of Hextðt
0Þ has two sources, first the fixed time depend-

ence expð�iot0Þ of the classical field AðtÞ; and second, the Heisenberg time-de-
pendence, ĵðtÞ ¼ expðiHt=_Þĵ expð�iHt=_Þ assigned to operators. The frequency o is
assigned a small positive imaginary part o! oþ iZ; which has the effect that at
time t ¼ �1; the perturbation vanishes and the density matrix has its equilibrium
value. The Kubo formula [17–19] for the conductivity then follows by simple
manipulation. It has at least two important versions,

sabðoÞ ¼
ine2

mo
dab þ

1

_oV

Z 1

0

dteioth½ĵaðtÞ; ĵbð0Þ�i (16)

sabðoÞ ¼
1

V

Z b

0

dl
Z 1

0

dteiothĵað�i_lÞĵbðtÞi (17)

The angular brackets hQ̂i � trðr̂Q̂Þ mean a canonical ensemble average using the
equilibrium density matrix. The first version, Eq. (16), has the usual form [18] from
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linear response theory of a ‘‘retarded’’ commutator correlation function. The word
‘‘retarded’’ refers to the fact that the commutator is set to zero for to0; as is
appropriate for a causal or retarded response. The first term of this expression,
which comes from the diamagnetic part of the current operator, is singular, di-
verging as o! 0: This divergence cancels against pieces from the second term.

The second version, Eq. (17) gets rid of the commutator and the singular first
term, at the cost of introducing an imaginary time �i_l: This is treated like a real
time, with the replacement t!�i_l in the Heisenberg time evolution. It can be
derived from Eq. (16) using an operator identity for the density matrix,

½Q̂; r̂� ¼ �i_r̂
Z b

0

dl _̂Qð�i_lÞ (18)

where the time derivative of Q̂ is ði=_Þ½H; Q̂�:
To analyze these formulas, let us pretend that we know a complete set of many-

body eigenstates Hjni ¼ Enjni of the system before the field is applied. Then we get
from Eqs. (16) and (17) the ‘‘spectral representations’’

sabðoÞ ¼
ine2

mo
dab þ

i

oV

X

mn

e�bEn � e�bEm

Z

hnjjajmihmjjbjni

_ðoþ iZÞ � ðEm � EnÞ
(19)

sabðoÞ ¼
i_

V

X

mn

e�bEn � e�bEm

ZðEm � EnÞ

hnjjbjmihmjjajni

_ðoþ iZÞ � ðEm � EnÞ
(20)

where the positive infinitesimal Z has been added ðo! oþ iZÞ to make the time
integrals well defined. Because the denominators have imaginary parts which are
delta functions, it is easy to show that both expressions have the same real part.
This real part can be written in spectral representation, and then resummed as a
correlation function,

ResabðoÞ ¼
p
oV

X

mn

e�bEn � e�bEm

Z
hnjjajmihmjjbjnidð_o� ðEm � EnÞÞ (21)

ResabðoÞ ¼
1� e�b_o

2_oV

Z 1

�1

dteiothjaðtÞjbð0Þi (22)

This last version of the Kubo formula is known as the ‘‘fluctuation-dissipation’’
theorem, because it relates the random current fluctuations of the equilibrium sys-
tem hjðtÞjð0Þi to the dissipative part Res of the conductivity. The spectral version
Eq. (21) is the same as the Fermi golden rule for the rate of absorption of energy by
the system from the electromagnetic field via the perturbation Hext ¼ �j � A=c: The
Kubo formulas Eqs. (16) and (17) are the results of lowest-order time-dependent
perturbation theory in powers of the external field. This formula is the starting
point for many-body perturbation theory using the response of a non-interacting
system as a reference.
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4.2. Kubo–Greenwood Formula

Often materials are successfully approximated as non-interacting Fermi systems.
The Hamiltonian is the sum

P
i H0ðiÞ of identical single-particle Hamiltonians for

each electron. The single-particle eigenstates H0jni ¼ �njni are a convenient basis,
and the current operator can be written as

ĵxðtÞ ¼
X

nm

hnjjxjmic
y
ncme

ið�n��mÞt=_ (23)

For an interacting system the same basis is used, and the same operator expression
works at t ¼ 0; but the Heisenberg time dependence of the current operator can no
longer be written out explicitly. To evaluate the Kubo formulas, Eqs. (16) and (17),
in non-interacting approximation Eq. (23), we need

trr̂ð½cyncm; c
y
pcq�Þ ¼ dmpdnqð f n � f mÞ

trr̂ðcyncmcypcqÞ ¼ dmpdnq f nð1� f mÞ þ dnmdpq f n f p ð24Þ

Here, f n ¼ ðexpðb�nÞ þ 1Þ�1 is the Fermi–Dirac occupation factor. Either procedure
leads to

sabðoÞ ¼
i_

V

X

mn

f n � f m

�m � �n

� �
hnjjajmihmjjbjni

_ðoþ iZÞ þ ð�n � �mÞ
(25)

To get this result from Eq. (19) requires separating denominators 1=_oð_oþ DÞ
into 1=D times 1=D� 1=ð_oþ DÞ and then cancelling the first term against the
diamagnetic part of Eq. (16) by use of operator relations pa ¼ ðim=_Þ½H; ra� and
½ra; pb� ¼ i_dab:

First, let us interpret Eq. (25) for the case of a perfect crystal. The single particle
quantum number n is now ðknsÞ; the current matrix elements are k-diagonal, and
the sum over n;m goes over transitions between filled and empty band states. For a
semiconductor or insulator, this is the usual band-theoretic optical interband con-
ductivity. For a metal, we have additional diagonal elements hnjjajni which equal
�evkna: The n ¼ m diagonal part of ð f n � f mÞ=ð�m � �nÞ must be interpreted as
�@f ð�knÞ=@�kn: This can be understood by remembering that the electric field in an
optical experiment is not strictly homogeneous but has a wavevector q with q ¼ o=c

small on the scale of the Brillouin zone. The current matrix elements are then not
diagonal, but defined between states of wavevector k and kþ q: The limit q! 0
goes smoothly. The resulting intraband piece of Eq. (25) is

sintraband;abðoÞ ¼
ie2

oþ iZ

� �
1

V

X

kn

�
@f

@�kn

� �
vknavknb

" #
(26)

This is exactly the Drude result, Eq. (6), except that the true collision rate 1=t is
replaced by the infinitesimal Z; reflecting the absence of collisions in the non-in-
teracting perfect crystal. The factor in square brackets above is the Drude ðn=mÞeff ,
written correctly as a tensor which becomes a scalar for high-symmetry solids.
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To really derive the Drude conductivity including collisions from the Kubo for-
mula, the correct route is through a Boltzmann equation. There are convincing
derivations of the linearized Boltzmann equation starting from the Kubo formula
[20–22]. The derivations are quite tedious. Amazingly, the correct (and not line-
arized) Boltzmann equation was guessed by Bloch long before the advanced per-
turbative techniques were available. The reasons for Bloch’s success were clarified
by Landau. Solving the Bloch–Boltzmann equation in all generality is also not easy.
Simple approximations work well much of the time, and allow an easy alternate
derivation of the Drude ðn=mÞeff : This will be shown in Section 6.2, especially
Eq. (55) which gives further interpretation.

The Boltzmann approach works only if the crystal is pure enough, and has weak
enough interactions, that the wavevector k is a fairly good quantum number. This
fails in dirty alloys, yet a single-particle approximation may still be good. Therefore,
Eq. (25) has a range application outside of Boltzmann theory. This is discussed in
Section 8. Eq. (25) is often rewritten in terms of the single-particle Green’s function

Ĝ
þ
ðEÞ ¼

1

E þ iZ� Ĥ0

Ĝ
�
ðEÞ ¼

1

E � iZ� Ĥ0

Ĝ
x
ðEÞ ¼

1

2pi
ðĜ
þ
� Ĝ

�
Þ ¼

X

n

jnidðE � �nÞhnj

Ĝ
x
ðx;x0;EÞ ¼ hxjĜ

x
ðEÞjx0i ¼

X

n

cnðxÞc
�
nðx
0ÞdðE � �nÞ ð27Þ

The notation is that of Ziman [23]. The label x denotes ðrsÞ; the space and spin
coordinates of the electron. The non-interacting Kubo formula in the dc limit can
be written as

sab ¼
pe2_

m2V

Z
dxdx0

_

i
raG

xðx;x0; �FÞ

� �
_

i
r0bGxðx0;x; �FÞ

� �
(28)

where ra ¼ @=@ra and r
0
b ¼ @=@r0b: This is called the ‘‘Kubo–Greenwood’’ formula

[17,24]. It is not any different from the previous version Eq. (25), but is useful if the
disorder is treated perturbatively. One then averages over an ensemble of different
representatives of the disorder. The correct procedure is to average the product of
the two Green’s functions. This is not the same as multiplying two separately
averaged Green’s functions. The latter procedure, for example, does not permit
Anderson-insulating behavior in very disordered electron systems. The reason is
that the averaged G loses off-diagonal information and cannot distinguish localized
from delocalized states.

4.3. Conductance as Transmission

When coherent electron transmission plays a role, Kubo and Boltzmann formu-
lations become less appropriate than an analysis starting from scattering theory
[25–29]. Consider the system shown schematically in Fig. 4. On the left and right are
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perfect metals regarded as electrodes. The central section may have disorder, or an
oxide barrier, or a vacuum break (modeling a scanning tunneling microscope, for
example), or perhaps a break which has been filled with some molecular bridge
material. The left and right ballistic leads each have their own chemical potential,
mL and mR; set by distant reservoirs which are not modeled explicitly. Choosing each
electrode sequentially as a source of incident waves, the Schrödinger equation is
solved for the amplitude of transmission into the other electrode (or electrodes in a
multi-terminal device). We may not wish to average over an ensemble of related
systems, but instead might wish to study the interesting idiosycracies of some
particular system.

The scattering state wavefunction for a state incident from the left is

jcknLi ¼ jknLi þ
X

m

rðkÞmnj � kmLi on the left

¼
X

m

tðkÞnmjkmRi on the right ð29Þ

where r and t are reflection and transmission coefficients connecting the incident
state jknLi to reflected j � kmLi and transmitted jkmRi: Here k is the 1D wave-
vector for propagation along the electrode; it is not necessarily the same on left (L)
and right (R). Each electrode has possibly many ‘‘channels’’ or tranverse quantum
states n;m near the Fermi level. At fixed energy each channel has a different k:
When left and right electrodes are inequivalent, the states jknL;Ri are normalized
with a factor of

ffiffi
ð

p
vknL;RÞ so that unitary transmission matrices tmn are required by

current conservation. The conductance of this system was already discussed in
Section 3 for the ballistic case t ¼ dmn and r ¼ 0:When there is non-zero scattering,
Eq. (12) generalizes to [25,26]. This is a Landauer formula [25,29]. In the Ohmic
limit I = GV we get

I ¼
2e

h

Z
d�½f Lð�Þ � f Rð�Þ�tr½t

ytð�Þ� (30)

G ¼ G0trðt
ytÞ (31)

The 2 is for spin, and the Fermi–Dirac functions f L;Rð�Þ are ðexpðbð�� mL;RÞ þ 1Þ�1:
Equation (31) follows from (30) in the limit where the source-drain bias

HC HR

VR
VL

HL

3 2 1

Fig. 4. Schematic diagram of a system with two ideal leads on left and right, modeled as

semi-infinite and described by Hamiltonians HL and HR: In the center is an island which is

coupled to the leads (perhaps weakly or perhaps strongly) by coupling matrix elements VL

and VR: The material in the center (described by HC) can be an oxide barrier, vacuum, a

disordered metal, or a molecule.
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VSD ¼ ðmL � mRÞ=e is smaller than the characteristic energies of the leads or of
the system between the leads. Equation (30) goes beyond the Kubo approach in
allowing bias voltages outside the regime of linear response. However, inelastic scat-
tering effects do not easily get incorporated.

There is a more general approach using non-equilibrium Green’s function
(NEGF) theory, discussed by Meir and Wingreen [30,31], which in principle permits
a full treatment of interactions and inelastic scattering, but is not easy to implement.
In the non-interacting limit, a result is found equivalent to Eq. (30), but more
convenient for computation. The derivation was first given by Caroli et al. [31]. The
total Hamiltonian is written

H tot ¼ HL þ ½VL þHC þ VR� þHR (32)

Whereas the scattering method treats the three terms in square brackets as
one scattering potential, now we think separately of the solutions to the three pieces
described by HL; HR; and HC : Long-range interactions between different sub-
systems are omitted. The parts of the Hamiltonian are usually expressed in a basis
of single-particle local orbitals. The single-particle Schrödinger equation in sche-
matic form is

HL � � VL 0

V
y

L HC � � VR

0 V
y

R HR � �

0
B@

1
CA

cL

cC

cR

0
B@

1
CA ¼ 0 (33)

Let us suppose that we can find the separate ‘‘partial’’ Green’s functions

gLð�Þ ¼ ð��HLÞ
�1

gCð�Þ ¼ ð��HCÞ
�1

gRð�Þ ¼ ð��HRÞ
�1

ð34Þ

For the central region, perhaps the system is small enough that we can solve
HC jCi ¼ ECjCi exactly by some method. The L and R electrodes are semi-infinite,
and almost periodic except that the termination at the central region destroys
translational invariance. We prefer not to find explicit solutions HLjLi ¼ ELjLi and
HRjRi ¼ ERjRi: It turns out that the partial Green’s function gLðx; x

0Þ is only
needed for x; x0 lying in the surface region labeled 1 on Fig. 4, and similarly for gR: If
the surface part 1 couples by V 12 to layer 2, and is decoupled from other interior
layers, and if identical matrices V23; etc. couple the other layers, then there is a
closed equation which can be solved iteratively, with g

ðnÞ
L approaching g as n!1;

namely

g
ðnþ1Þ
L ¼ ð�� h1 � V

y

12g
ðnÞ
L V12Þ

�1 (35)

where h1 is the part of HL confined to layer 1; assumed identical in form to h2; etc.
There is an alternate method to calculate gL due to Kalkstein and Soven [32].
Therefore all three partial Green’s functions may be calculable. They can be used to
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find the transmission and the current

I ¼
4pe

_

Z 1

�1

d�
X

LR

jhLjT̂ jRij2dð�� ELÞdð�� ERÞ½f Lð�Þ � f Rð�Þ� (36)

without explicitly finding jLi; or EL; etc. The transmission matrix T̂ is given by the
Lippman–Schwinger equation,

T̂ ¼ ðV L þ V RÞ þ ðVL þ VRÞ
yGð�ÞðV L þ VRÞ (37)

where G ¼ ð��HÞ�1 is the Green’s function of the whole system. We assume the
central region large enough that there are no direct couplings, 0 ¼ hLjVL þ VRjRi:
Therefore the off-diagonal parts of the T̂ matrix are

hLjT̂ jRi ¼
X

MM 0

hLjV
y

LjMihMjGjM
0ihM 0jVRjRi (38)

From this we see that the system’s Green’s function matrix Gðx; x0Þ is only needed
for x;x0 in the central region where the eigenstates are jMi; jM 0i: Denoting this
submatrix as GC ; and doing some matrix algebra, we find

GCð�Þ ¼ ð��HC � SL � SRÞ
�1 (39)

where the self-energies SL;R contain the shift and broadening of the states of the
central region which come from coupling to the leads,

SLð�Þ ¼ V
y

LgLð�ÞVL SRð�Þ ¼ V
y

RgRð�ÞV R (40)

Now we are ready to rewrite Eq. (36) in terms of this central part of the Green’s
function. The self-energies SL;R have imaginary parts

hNjGLjMi ¼ �2ImhNjSLð�þ iZÞjMi

¼ 2p
X

L

dð�� ELÞhNjV LjLihLjV
y

LjMi ð41Þ

and similarly for GR: Now we can express the current as

I ¼
2e

h

Z 1

�1

d�tr½GLGCð�� iZÞGRGCð�þ iZÞ�½f Lð�Þ � f Rð�Þ� (42)

where the trace goes over states of the central region only.
This equation is widely used to calculate the conductance dI=dVSD both in the

linear regime of small source-drain bias and beyond the linear regime, for small
molecules or other small systems. For example, ‘‘exact’’ single-particle eigenstates
of a model dirty alloy may be found for small samples, of order 100 atoms. Cal-
culation of resistivity by direct application of the Kubo–Greenwood formula has
some difficulties because of the discreteness of the spectrum. These difficulties are
nicely smoothed over if the small system is attached to two ideal leads and Eq. (42)
is used [33–35]. For molecular applications, theory and experiment for the
non-linear GðV Þ curves do not often agree closely. The subject is under rapid
development [36–40].
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5. SUPERCURRENT AND ANDREEV REFLECTION

Supercurrent jS is a collective motion of the superconducting condensate, Eq. (2).
The order parameter c is related to the pair amplitude hck"c�k#i; which gives the
occupancy of a Cooper pair state built from the time-reversed pair of electrons
(k ";�k #). The pair amplitude acquires a current-carrying phase factor expðiq � rÞ
if all states k0 " and �k0 # are shifted by q=2: Then the current is jS ¼ �2enS_q=m:

Andreev [41] explained how a current in a normal metal (N) can flow across the
N/S boundary to the superconducting (S) side. An incident N quasiparticle k " with
current �evk can convert directly (with some amplitude for reflection as well as
transmission) into a current-carrying S excited quasiparticle, but only if the N
energy �k � m exceeds the S gap D: If j�k � mjoD; this is not possible, and the only
route is for the incident N electron to bind to another N electron �k #; entering the
S side as a Cooper pair. After this event, the N side lacks the �k # electron, which
means it has a hole with charge þjej and velocity v�k ¼ �vk: This hole continues to
carry N current �evk; the same as the N current before the k " state entered S. This
process, called ‘‘Andreev reflection,’’ doubles the current.

An elegant illustration [42] is shown in Fig. 5. A superconducting Nb wire was
sharpened to make a point contact and carefully contacted to various clean normal
metal surfaces (paramagnetic Cu and various ferromagnets). The conditions are not
always reproducible, and only selected data were used for analysis. The selected

Fig. 5. Differential conductance dI=dV versus source-drain bias in a superconductor/nor-

mal point contact [42]. A superconducting Nb point is contacted to various metals. Cu shows

the effect of Andreev reflection doubling the conductance at low bias, whereas the ferro-

magnetic samples with reduced minority spin population show suppression of the

Andreev process.
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data are believed to satisfy the criteria for Andreev reflection, cleanliness and
transparency of the point contact. When the bias voltage V across the point contact
is 	D=e (the gap D of Nb is 1.5meV, slightly higher than 3:52kBT c=2), structure is
seen in the differential conductance G ¼ dI=dV ; arising from the BCS peak

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � D2

p
in the quasiparticle density of states. At larger biases, V42D=e; G is

independent of bias and approaches the conductance of the normal metal N. At low
biases, jV joD=2e; the conductance doubles in the Cu point contact as expected
from Andreev reflection [43]. But CrO2 is different in that there are no down-spin
electrons near the Fermi level. It is a ‘‘half-metallic’’ ferromagnet, meaning that the
minority spins have an insulating gap while the majority spins are metallic. There-
fore, in CrO2, no Andreev process is possible, and the conductance is essentially
zero at small bias. Other ferromagnets, which have reduced but non-zero numbers
of minority carriers at the Fermi level, show an intermediate effect. Analysis using

the theory of Blonder et al. [43] indicates a point contact area 
 104 (A
2
; large

compared to the area o100 (A
2
where quantized conductance is expected as in

Fig. 3.
This experiment illustrates an important theme of present-day nanoscale physics.

Use of nanoscale devices can enormously enhance the view of phenomena which are
also present in bulk but hard to access experimentally. The cost is that data may
have to be selectively sorted based on theoretically inspired criteria, since control
over fabrication is so primitive. This enlarges the opportunity for ill-considered
claims (not illustrated here!) or outright fraud [44].

6. BLOCH–BOLTZMANN THEORY

Transport theory of solids began with Bloch’s [4] thesis of 1928 which explained
metallic resistivity. Landau [5] clarified the meaning of Bloch’s work. Around 1962
theoretical tools improved to the point that the rigorous basis for Bloch’s ideas
became clear [20–22]. Since around 1980 [45,46] it has been possible to compute
with Bloch’s theory for metals with non-trivial band structures, which fully tests the
theory. It has also been possible to go outside the validity of Bloch’s theory to
calculate the resistivity of dirty alloys, liquid metals, and amorphous metals, using
one-electron theory and neglecting inelastic scattering.

Following Landau [5], assume that there exist single-particle-like electron exci-
tations, and that the occupation function or distribution function F ðk; r; tÞ exists. F

is an ensemble average non-equilibrium distribution. For large samples with ho-
mogeneous fields, the volume average equals the ensemble average, or the system is
self-averaging. In small samples at low T ; interesting deviations from self-averaging
can be seen, requiring a more complete theory. Two effects cause F to evolve with t:
First, scattering causes discontinuous changes of the quantum number k at some
statistical rate. Second, there is smooth evolution arising from drift and acceleration
of quasiparticles. Ignoring collisions, at a later time tþ Dt; the new distribution
F ðk; r; tþ DtÞ will be the old distribution F ðk � _kDt; r� _rDt; tÞ: This is expressed by
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the Boltzmann equation

@F

@t
þ _k �

@F

@k
þ _r �

@F

@r
¼
@F

@t

����
coll

(43)

The left-hand side is the ‘‘co-moving’’ time derivative and the right-hand side takes
account of collisions. Bloch [4] identified _r with vk and _ _k with the force �eðEþ

vk � B=cÞ of applied fields. The collision term ð@F=@tÞcoll was constructed using the
probabilistic rules of t-dependent perturbation theory, and requires knowing the
occupancies F ðk0Þ of all other states k0: The theory is amazingly powerful and
surprisingly accurate for a wide class of materials. It rests on assumptions of wide
validity, although their truth is far from evident. The most fundamental underlying
assumption was explained by Landau [5] – the assumption of the existence of
‘‘quasiparticles.’’ A quasiparticle is an approximate excited state with charge 	jej;
spin 	1=2; and a reasonably sharp wavevector k 	 1=‘k and energy �k 	 _=tk;
where ‘k ¼ vktk is the mean free path and tk the time interval before the excitation
loses its sharp definition in energy or momentum. In Section 6.6, the issue is dis-
cussed of whether band theory gives correct quasiparticle energies.

6.1. Technical Definition of Quasiparticle

The ‘‘temperature Green’s function’’ Gðk;sÞ ¼ �hT̂ckðsÞc
y

kð0Þi is the convenient
object for perturbation theory. An imaginary time it! s labels the electron
destruction operators ckðsÞ ¼ expðsHÞck expð�sHÞ and is ordered by the Wick
operator T̂ : This Green’s function is Fourier transformed into the imaginary
Matsubara frequency ion; giving Gðk; ionÞ: It is then analytically continued to the
real frequency axis to give the retarded Green’s function

Gðk;oÞ ¼ ½o� �k � Sðk;oþ iZÞ��1 (44)

where Sðk;oþ iZÞ is the complex self-energy which can be evaluated perturbatively.
The imaginary part of G is the electron spectral function Aðk;oÞ

Aðk;oÞ ¼ �
1

p
ImGðk;oÞ (45)

For fixed k; the o-dependence of Aðk;oÞ is interpreted as the spectrum of excitation
energy that results from insertion of an electron into the system in state k outside
the Fermi surface, or from insertion of a hole into the system in a state k inside the
Fermi surface. The latter process is experimentally accessed in a photoemission
experiment, and the former in an ‘‘inverse’’ photoemission experiment, although
there are complicating details that weaken these interpretations [47,48]. If the
Green’s function has a simple pole 1=ðo� okÞ at complex frequency ok; below the
real o axis by an amount �Imok; then Aðk;oÞ has a Lorentzian peak whose center
defines the quasiparticle energy ��k and whose width gives the relaxation rate 1=t�k:
We assume that the real part of the self-energy can be expanded for small o as

ReSðk;oþ iZÞ ¼ d�k � olk (46)
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Then we define

��k ¼
�k þ d�k
ð1þ lkÞ

1

t�k
¼
�2

ð1þ lkÞ
ImSðk; ��k þ iZÞ ð47Þ

so that the spectral function has approximately the form of a Lorentzian lineshape,

Aðk;oÞ ¼
zk

p
_=2t�k

ðo� ��kÞ
2
þ ð_=2t�kÞ

2
(48)

Here zk ¼ 1=ð1þ lkÞ is called the wavefunction renormalization.
If _=t�k is small compared to relevant energies like j��k � mj; then the Lorentzian is

sharp as a function of o: We may identify ��k as the ‘‘quasiparticle energy.’’ How-
ever, the quasiparticle is only well defined if the spectral function is sharply peaked
also as a function of jkj: Expanding ��k as �F þ _v�k � ðk� kFÞ; we must also require
that ‘�k ¼ jv

�
kjt
�
k be large enough compared to relevant distances 1=kF or the lattice

constant a:
This is actually not the only way to make a connection between G and a qua-

siparticle. When deriving a Boltzmann equation from the non-equilibrium version
of G [21] it is preferable to define F by integration of G over the component k? of
the k-vector perpendicular to the Fermi surface. This permits a Boltzmann equation
to persist even for certain cases where the quasiparticle defined above fails to be
narrow enough to recognize.

6.2. Solution for Conductivity

Consider a bulk material with a homogeneous dc electric field. A steady-state cur-
rent flows, derivable using Eq. (1) from a steady-state non-equilibrium distribution
F ðkÞ ¼ f ðkÞ þ dF ðkÞ; where f ðkÞ is the Fermi–Dirac distribution 1=½expð�k=kBTÞ þ

1��1: To find dF to first order in E it is necessary to solve the linearized equation of
motion for F ; that is, the linearized version of Eq. (43),

�eE � vk

@f

@�k

¼ �
X

k0

Iðk; k0ÞdF ðk0Þ. (49)

The left-hand side is the linearized version of _k � @F=@k; and the right-hand side is the
linearized collision integral. After suitable manipulations (explained in Refs. [49,50])
an integral equation with a Hermitean non-negative kernel is obtained. The non-
negativity is required by the second law of thermodynamics and guarantees that
entropy (which can be defined [51] for near-equilibrium Fermi gases by
S=kB ¼ �

P
k

½Fk lnFk þ ð1� F kÞ lnð1� F kÞ�) increases steadily in time until equi-
librium is reached. The Hermitean operator can be inverted by brute force in
k-space [45] or using smaller matrices after expansion in a convenient set of
orthogonal polynomials [52,53]. The solution can be guided by a variational principle
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(maximum entropy production) [49,50]. A general form of a variational ansatz is

F ðkÞ ¼ f ðkþ eEtk=_Þ ! f ðkÞ þ etkE � vk

@f

@�k

� �
(50)

which represents a Fermi–Dirac distribution pulled off-center by the E-field. The
displacement of the Fermi surface is governed by the k-dependent parameter tk

which is varied to optimize the solution of the exact linearized equation. One can
pretend that this ‘‘trial’’ solution follows from a ‘‘relaxation-time’’ representation of
the Boltzmann equation,

@F

@t

� �

coll

!�
X

k0

Iðk; k0ÞdF ðk0Þ ! �
dF ðkÞ

tk

(51)

However, the last form of this equation is not the true evolution equation. The tk

which gives the exact solution of the real equation has no closed-form expression,
and is definitely different from the quasiparticle lifetime t�k defined above. One dif-
ference is that the ‘‘renormalization factor’’ 1þ lk in Eq. (47) is missing; all such
factors cancel in the dc limit. Another difference is that a correction like 1� cos ykk0

needs to be included in the tk which solves the Boltzmann equation with a driving
field. This factor suppresses the contribution of small angle scattering, because small
angles do not much degrade the electrical current.

The formula for dc electrical conductivity is found from Eqs. (1) and (50)

sxx ¼
e2

V

X

k

v2kxtk �
@f

@�k

� �
(52)

where tk depends on the details of the scattering and on the temperature, and
remains to be determined. There is one standard variational trial solution which
works quite well and gives convenient closed-form answers. If we assume that the
parameter tk in Eq. (50) is ttr; independent of k; the Boltzmann equation will specify
the optimal value of ttr which gives s closest to the exact solution. The answer is

1=ttr ¼

P
k;k0vkxvk0xIk;k0 ð�@f =@�0kÞP

kv2kxð�@f =@�kÞ
(53)

Within this variational approximation we now have a closed-form approximation
for the electrical conductivity,

s ¼
n

m

� �

eff
e2ttr (54)

where t is given by Eq. (53), and ðn=mÞeff is given by

n

m

� �

eff
¼

1

V

X

k

v2kx �
@f

@�k

� �
¼

1

V

X

k

@2�k

@ð_kxÞ
2

� �
f k (55)

The first version of Eq. (55) is convenient for numerical computation from band
theory [54]. It was already derived by a different method in Eq. (26). Using the
replacement dð�kÞ ¼ �@f =@�k; the k-sum is restricted to the Fermi surface. The second
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version is obtained from the first after integration by parts. In the second form, it is
clear that ðn=mÞeff is the sum over occupied states of the reciprocal band effective mass.
The sum over a filled band has positive and negative contributions and gives zero.

6.3. Orders of Magnitude

A big part of transport theory concerns [55] the phenomenological relaxation rate
1=t: Let us estimate the order of magnitude of various contributions. There are
three interactions (impurities, electron–phonon interactions, and Coulomb scatter-
ing) which always affect the lifetime of quasiparticles in metals,

H imp ¼
X

kk0

V impðkk0ÞSimpðk � k0Þc
y

k0
ck (56)

Hep ¼
X

kk0Q

V epðkk0QÞc
y

k0
ckða

y

Q þ a�QÞ (57)

HC ¼
X

1234

VCð1234Þc
y

1c
y

2c3c4 (58)

For magnetic materials, spin waves [56] and spin disorder also scatter. Here SimpðqÞ

is the ‘‘impurity structure factor’’ Simp ¼
P

i expðiq � RiÞ where Ri is the position of
the ith impurity. The operator aQ destroys the phonon of wavevector Q and energy
oQ: Discrete translation symmetry gives a crystal momentum selection rule requir-
ing the matrix element V epðkk0QÞ to vanish unless k0 � k ¼ QþG where G is a
reciprocal lattice vector. The shorthand ð12 . . .Þ means ðk1; k2; . . .Þ; and crystal mo-
mentum conservation requires that VCð1234Þ vanishes unless ðk1 þ k2 � k3 � k4Þ

equals a reciprocal lattice vector.
One estimates the lifetimes from the Golden rule as follows:

_=timp ¼ 2pnimpjV impj
2Nð0Þ (59)

_=tep ¼ 2pnphjV epj
2Nð0Þ (60)

_=tC ¼ 2pnpairsjVCj
2Nð0Þ (61)

where Nð0Þ is the density of states at the Fermi level. Here nimp comes from av-
eraging the impurity structure factor hSðq1ÞSðq2Þi ¼ nimpdðq1 þ q2Þ: The factor nph is
the number of phonons hayai which at high temperature is kBT=_oph: The factor
npairs is the number of electron-hole pair states ðkBT=�FÞ

2 available for an electron
to create when it scatters by the Coulomb interaction. Thus the orders of magnitude
can be written

_=timp � nimp�F (62)

_=tep � kBT (63)

_=tC � ðkBTÞ2=�F (64)
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Here we use the fact that the typical impurity or Coulomb scattering matrix element
is a few eV in magnitude, similar to the Fermi energy �F; while the electron–phonon
matrix element V ep �

ffiffi
ð

p
_oph�FÞ is smaller. Impurity scattering has _=t smaller

than �F by the small parameter nimp; electron–phonon scattering by the small
parameter ðkBT=�FÞ; and Coulomb scattering by two factors of the same. At low T ;
impurity scattering always dominates (unless superconductivity intervenes and de-
stroys the Fermi liquid). At high enough T ; in principle, Coulomb scattering should
dominate, but usually the required temperature is above the melting temperature.
At intermediate temperatures, phonons dominate. At lower temperatures, the
number of phonons decreases as the third rather than first power of ðkBT=_ophÞ; so
there is a window at low T where the Coulomb interaction is larger than the
electron–phonon interaction. Except for extremely clean metals, impurity scattering
dominates Coulomb scattering in this window.

6.4. Computation of Resistivity

At the level of the variational solution Eqs. (53) and (54), the resistivity obeys
Matthiessen’s rule, being composed of additive parts from the various scattering
mechanisms

1=ttr ¼ 1=timp þ 1=tep þ 1=tee (65)

The dominant source of deviation from Mattheissen’s rule is not because of higher
than second-order effects where different scattering mechanisms mix, but rather in
the fact that the true solution for the displacement tk of the Fermi distribution can
reoptimize if the different scattering processes have differing anisotropies. The fact
that measured deviations from Matthiessen’s rule [57] are small indicates that the
lowest order variational solution is generally quite good. Successful computation
[58] of deviations from Matthiessen’s rule shows that Bloch–Boltzmann theory is
correct in many details.

Using general properties of the linearized collision integral Iðk; k0Þ; it has been
shown [49,50] that the variational formula Eq. (53) can be written as

1=ttr ¼
P

kk0 ðvkx � vk0xÞ
2Pkk0

2kBT
P

kv2kxð�@f =@�kÞ
(66)

where Pkk0 is the rate of transitions from state k to state k0 for the system in
equilibrium. This is non-negative, and symmetric (Pkk0 ¼ Pk0k) which is the ‘‘prin-
ciple of detailed balance.’’ The factor ðvkx � vk0xÞ

2 becomes ð2v2F=3Þð1� cos ykk0 Þ in
spherical symmetry.

Using the Hamiltonian Eq. (57), and writing V epðkk0QÞ as Mðkk0Þdðk0 � k �QÞ;
it is convenient to define a class of ‘‘electron–phonon spectral functions’’

a2wF ðOÞ ¼ Nð0Þ

P
kk0 jMðkk0Þj2wðk; k0ÞdðO� ok�k0 Þdð�kÞdð�k0 ÞP

kk0wðk; k
0
Þdð�kÞdð�k0 Þ

(67)
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The weight function wðk; k0Þ has various forms. When w ¼ 1; the function called
a2F appears in the Migdal–Eliashberg theory of superconductivity [59–62]. When
w ¼ ðvkx � vk0xÞ

2; the function is called a2trF : The weighted relaxation rate is defined
correspondingly as

1=tw ¼
4pkBT

_

Z 1

0

dO
O

a2wF ðOÞ
_O=2kBT

sinhð_O=2kBTÞ

	 
2
(68)

When w ¼ 1 this is the electron–phonon contribution to the Fermi surface average
quasiparticle equilibration rate (except stripped of the renormalization factor
ð1þ lÞ�1). When w ¼ ðvkx � vk0xÞ

2; it gives the electron–phonon part of 1=ttrðTÞ
which determines the resistivity in variational approximation. Numerical compu-
tations show that for elemental metals (see the inset of Fig. 6 for the case of In [63];
for Cu see ref. [58]) the various functions a2wF ðOÞ bear a close resemblance to the
phonon density of states F ðOÞ: Finally, we define dimensionless coupling constants
lw by the equation

lw ¼ 2

Z 1

0

dO
O

a2wF ðOÞ (69)

Fig. 6. Calculated resistivity of In versus T [63]. The two theoretical curves are computed

using the spectral functions shown in the inset. The dashed line uses a2F (corresponding

coupling constant l ¼ 0:88), and the solid line uses a2trF (coupling constant ltr ¼ 0:74: The
inset shows the similarity of these functions to the empirical phonon density of states.
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The case w ¼ 1 gives the coupling constant l which determines the superconducting
transition temperature of conventional metals [64,65]. At high T (T4YDÞ), relax-
ation rates 1=tw ! 2plwkBT=_ are determined by the constants lw:

Quite a few calculations have been made of the superconducting function a2F ðOÞ
and l; but fewer of the corresponding transport function a2trF : Shown in Fig. 7 are
calculations [66] for four metals, done without adjustment of parameters. Agree-
ment with experiment is at the 10% level. These calculations predate the devel-
opment of efficient methods for calculating phonon dispersion oQ [67–69].
Therefore, oQ was taken from fits to experiment. The potential @V=@u‘ which
determines the matrix element Mðkk0Þ was not calculated self-consistently, but ap-
proximated as the rigid shift of the local ‘‘muffin-tin’’ potential. These approxi-
mations are appropriate for elemental metals only. Fully self-consistent
calculations, using theoretical phonon curves, were reported for 8 metals in a
monumental paper by Savrasov and Savrasov [70], for In in a careful study by

Fig. 7. Electrical resistivity of four transition metals versus temperature, showing exper-

iment compared with computations. The calculations used experimental phonon dispersion

curves and electronic band theory with no adjustable parameters as discussed in the text. See

Allen et al. (1986) [66] and references therein.

Electron Transport 187



Rudin et al. [63] shown in Fig. 6, and for 4 metals in an ambitious paper by Bauer
et al. [71]. A result from Ref. [71] is shown later in Section 10.

Modern ‘‘first-principles’’ theory permits calculations for more complicated
cases. The superconducting functions have been calculated for SrCuO2 [72] and for
MgB2 [73–76a]. The latter material has very anisotropic electron–phonon scattering
as k varies around the Fermi surface. Analogous to the known variation of the
superconducting gap Dk is the variation of the shift tk Eq. (50) which fixes the non-
equilibrium distribution function. One should expect significant k-dependence in tk

for MgB2, so the resistivity should deviate from the simplest variational approx-
imation with constant tk: This in turn should give big deviations fromMatthiessen’s
rule. The effect has been seen experimentally and explained by Mazin et al. [76b].
There are few serious attempts to calculate the electron-phonon resistivity of metals
related to La2CuO4. There are two reasons: (1) metallic behavior is found only after
doping which is an added challenge to theory; (2) there is doubt on the applicability
of Landau Fermi liquid theory.

6.5. More Phenomenological Treatments

In Bloch’s original work [4,77], an approximate formula emerged which Grüneisen
[78] popularized. This ‘‘Bloch–Grüneisen’’ formula is just our variational result,
evaluated for a spherical Fermi surface and a Debye phonon spectrum. It can be
written as

rBG ¼ r0 þ
16p2ltroD

4pðn=mÞeffe
2

2T

YD

� �5 Z YD=2T

0

dx
x5

sinh2 x
(70)

where the denominator of the prefactor, o2
P ¼ 4pðn=mÞeffe

2 defines the ‘‘Drude’’
plasma frequency. For many metals this formula gives an excellent fit to the re-
sistivity, with three adjustable parameters. The residual resistivity r0 shifts the
resistivity up and down. The Debye temperature YD stretches the T axis. Finally,
the strength of the electron–phonon part of the resistivity is fixed by the parameter
ltr=o2

P: It would be desirable to obtain separate values of ltr and o2
P: In principle, ac

measurements (see Eq. (6)) should be able to give the necessary extra information.
Unfortunately, this is rarely the case. The biggest problem is that interband tran-
sitions often overlap the Drude region very severely. The case of Cu shown in Fig. 1
is far more benign than most. Another difficulty is that infrared-active vibrational
modes appear in the spectrum of most interesting compound metals, complicating
the fitting. For quite a few metals it has been shown that the Drude plasma fre-
quency o2

P given by density functional theory (DFT) [79] agrees remarkably well
with experiment. This allows determination of an empirical value of ltr [80] pro-
vided the resistivity fits well to the Bloch–Grüneisen formula, and provided the
theoretical o2

P is known.
Non-cubic metals have anisotropic resistivities (rxxarzz) which, according to Eq.

(54) can arise both from anisotropy in ðn=mÞeff or in ttr; Eqs. (53) and (66). The
similarity of ltr to l shows that in many metals, there is little correlation between
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velocities vkx and matrix elements Ik;k0 : Therefore we expect ttr to be fairly isotropic,
and this agrees with experiment for metallic elements [81].

6.6. Quasiparticles from Band Theory

It is well established that DFT with good exchange-correlation potentials does sur-
prisingly well for ground state properties, including vibrational spectra, but fails to
give band gaps for higher energy excitations. At higher _o; sðoÞ probes band gaps.
Not only at higher o; but also in the dc limit, calculations of s should use qua-
siparticle energy bands [82] rather than DFT bands. However, experience shows that
low-lying quasiparticle excitations of metals are very similar to DFT eigenvalues, for
no known reason. Shapes of Fermi surfaces were predicted accurately well before the
modern era of fully self-consistent DFT bands, and continue to be well described by
DFT theory. Presumably they are not extremely sensitive to the potential. Group
velocities are critical to accurate transport calculations. The isotropic average Drude
plasma frequency squared can be written as ðe2=3p2_Þ

R
dAkjvkj; where dAk is an

element of Fermi-surface area. The ratio ltr=O2
p determines the magnitude of s in a

metal. Using ltr 
 l for metals where l is accurately known from superconducting
tunneling spectroscopy, the fitted O2

p agrees well with the DFT value. We can con-
clude that vk;DFT agrees with vk;QP for these metals [80]. Therefore at present, DFT
eigenstates seem sufficient for transport theory.

6.7. Resistivity of High Tc-Superconductors

Figure 8 shows the temperature-dependence of electrical resistivity of two of the
most famous high Tc compounds. The samples are believed to be extremely good
[83,84]. Theoretical understanding is limited; transport phenomena in 3d metals still
has surprises. For pure YBa2Cu3O7, the data, on carefully detwinned samples, show
‘‘metallic’’ resistivity in all three crystallographic directions. The large magnitude of
r (somewhat bigger than most conventional metals) can be assigned to the small
carrier density. There is a factor of 2 anisotropy between the a-axis (lower resis-
tivity) and b-axis. This was predicted before the experiment by DFT calculations of
the Drude plasma frequency tensor Opab [85], using the assumption that ttr is iso-
tropic. Along the b-axis, where the CuO chains run, DFT gives _Op 
 4.4 eV, while
perpendicular to the chains, on the a-axis, it is 2.9 eV. The squared ratio agrees
nicely with experiment. The c-axis anisotropy is not so well predicted. The calcu-
lated c axis plasma frequency of 1.1 eV predicts rc=rb to be 7, while experiment
gives 33. One might conclude that band theory works surprisingly well, as is also
seen in photoemission spectroscopy.

On the other hand, part (b) of Fig. 8 shows what happens when holes are re-
moved from optimally Sr-doped La2CuO4. Similar results are seen in YBa2Cu3O7

[84]. At higher T ; the nominally insulating samples have ‘‘metallic’’ (dr=dT40)
resistivities. When the carrier density is scaled out, giving the inverse mobility ner;
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the mobilities of even antiferromagnetic ‘‘insulators,’’ with 0.01 holes per unit cell,
are only smaller than the mobilities of the optimum superconductor by a factor of 3.
This strongly contradicts conventional notions that electrons in good metals behave
ballistically, but dilute carriers in antiferromagnets have frustrated mobilities [86].

Whatever theory accounts for the optimum superconductor should therefore also
account for the far under-doped antiferromagnet. The shape of rðTÞ for the optimal
superconductors is close to linear. A simple explanation is that this agrees with the
Bloch–Grüneisen formula. The lower temperature region, where rBGðTÞ deviates
from linear, is hidden from sight by superconductivity. However, this explanation
does not work for under-doped materials. Also, the estimated mean-free path is too
small at the more resistive end to justify quasiparticle transport [87]. The Hall
coefficient has unusual temperature-dependence. The conclusion is that these data
are still not understood.

7. KONDO EFFECT AND RESISTIVITY MINIMUM IN

METALS

Figure 9 [88] shows resistivity of Au before and after implanting 60 ppm Fe
impurities. The small resistivity upturn at low T has captured a huge amount of

Fig. 9. Kondo resistivity [88]. The high-purity gold films used here are about 30 nm thick

and have size-limited residual resistivities of order r0 
 2mO cm: At 300K, phonon scattering

contributes an additional r� r0 
 2mO cm: At temperatures shown here, the phonon scat-

tering term is unobservable below 8K, and its turn-on can be seen in the interval

8KoTo20K: After Fe implantation, a new T-dependent Kondo term Dr 
 A� B ln½1þ

ðT=YÞ2� is seen, whose magnitude is about 0.005 times r0 and is independent of wire width

(after subtracting an impurity-enhanced electron–electron contribution).

Electron Transport 191



attention. The minimum in rðTÞ at around 8K is the crossover between phonon
scattering causing rðTÞ to increase with T at high T ; and magnetic impurity scat-
tering causing rðTÞ to decrease with T at low T :

Anderson [89] showed how a transition metal impurity can either retain or lose its
local magnetic moment when dissolved in a metal. Kondo [90,91] first glimpsed the
complexity of the behavior when the moment is retained. The relevant part of the
Hamiltonian is

HKondo ¼ �
X

i;‘

Jðri � R‘Þsi � S‘ (71)

where the ith electron of spin si has a spin-flipping interaction with the ‘’th mag-
netic impurity with spin S‘: Perturbation theory for spin-flipping interactions differs
from ordinary potential scattering from non-magnetic impurities in having a time-
dependent impurity spin. For any time-dependent perturbation in a metal, the
sharpness of the Fermi distribution causes logarithmic singularities in integrals.
These diminish with T at least as fast as logð�F=kBTÞ because of blurring of the
Fermi distribution. An exact solution was found by Wilson [92,93] using the
renormalization group, and by Andrei [94] using the Bethe Ansatz. These solutions
were given a physical interpretation by Nozieres [95,96]. The subject is by no means
closed. In particular, newer experimental tools applied to nanosystems permit more
detailed exploration [97]. Finite biases in tunnel junctions allow the ‘‘Kondo
resonance’’ to be explored by inelastic spectroscopy [98].

8. DIRTY FERMI LIQUIDS AND INTRINSICALLY

DIFFUSIVE STATES

The Bloch–Boltzmann equation works beyond the naive expectation that weak
interactions are required. However, the mean-free path of electrons in metals can
often be reduced below 10 (A; where the definition of the wavevector of a quasi-
particle is fuzzy. Metallic dirty alloys, liquids, and glasses are in this category. The
other requirements for Fermi liquid status may still apply – there are complicated
single-particle states of charge 	e; spin 	1

2
; and energies sharp on a scale of �F:

Because there is no wavevector, spectroscopies such as photoemission or Fermi-
surface resonant techniques are not available to prove the value of this picture, but
disorder does not automatically destroy the single-particle picture.

Dirty alloys are simplest, since the locations of atoms are known. Figure 10
shows an example [99]. In the region of ðx;TÞ with ro125mO cm; rðTÞ curves
merge if shifted vertically – Matthiessen’s rule is obeyed. When r4125mO cm; it is
violated, but Boltzmann theory can no longer possibly be valid, because quasipar-
ticles have had their k-vectors destroyed by either thermal disorder (in the pure V
metal) or alloy disorder. In this regime, resistivity varies more weakly with ðx;TÞ
than when resistivity is smaller and quasiparticles exist. This phenomenon is called
‘‘resistivity saturation’’ after the paper by Fisk and Webb [100], and has been
recently reviewed by Gunnarsson et al. [101–104].
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First let us focus on T ¼ 0: Theory should give reliable alloy disorder resistivity,
because this is not a many-body problem. There are two limits. If the disorder is
extremely large, states at the Fermi level may be Anderson-localized. Then the
material will be insulating, meaning that as T ! 0; rðTÞ ! 1: This is especially
important in 2D disordered films, outside the scope of this article. In d ¼ 3;
localization is harder to achieve. Section 11 will discuss the metal-insulator tran-
sition in 3d-doped semiconductors, where Anderson localization does occur. Since
the localized option occurs in d ¼ 3; and since localization cannot be found by
perturbation theory starting with delocalized basis functions, it is good to use a
non-perturbative approach for resistivity of dirty alloys, such as exact diagonal-
ization of finite subsamples. However, Brown et al. [105] showed that the ‘‘coherent
potential approximation,’’ a self-consistent perturbation theory, agrees with non-
perturbative methods for at least one very dirty alloy.

For dirty 3d metals, as in Fig. 10, rðTÞ shows reduced T-dependence. The dirtiest
alloys (V0:67Al0:33) have a small negative dr=dT : There is no well-accepted expla-
nation. Since rðTÞ does not diverge at low T ; true (or ‘‘strong’’) localization has not
set in; the alloy is still a metal. Relatively few d ¼ 3 metallic systems can be driven
to the localized non-metallic state. Examples are Ge1-xAux [106,107] for small Au
concentration xp0:12; in both polycrystalline and amorphous films, and similarly

Fig. 10. Electrical resistivity of Ti1�xAlx alloys versus temperature [99]. Matthiessen’s rule

(the total resistivity is intrinsic plus a constant upward shift from impurity scattering) is well

obeyed whenever ro125mO cm: At larger resistivities, ‘‘saturation’’ is seen.
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Si1�xNbx [108] for xp0.115. It is necessary to make a heavy dilution of a metal like
gold in a non-metal like Ge or Si, in order to get an insulator. At low T (below
20K), a small upturn of rðTÞ with decreasing T is often found, caused by effects
beyond Boltzmann theory. If the effect is enhanced by disorder, then it is not a
Kondo effect, but is denoted ‘‘weak localization’’ or ‘‘quantum corrections.’’ Their
origin is similar to the origin of Anderson or ‘‘strong’’ localization, but the resis-
tivity remains well under 1000mO cm; and the net change between 20 and 0K is a
few percent or less. These effects are discussed in Section 9.

There is an incorrect belief that kF‘ 
 1 or ‘ 
 a is the criterion for localization in
3d. Experiment clearly shows that this is not true, and that instead, metallic re-
sistivity 100mO cmoro1000mO cm (indicating kF‘ 
 1) occurs commonly with no
sign of a true insulator. What is the mechanism of transport? Here is a thought
experiment which could be computationally implemented on a large computer. For
good crystalline metals, the propagating nature of Bloch states is proved by con-
structing Gaussian wavepackets out of k-states centered on particular wavevectors
k0: The Schrödinger equation evolves the state in time, the center of the wavepacket
moving with the group velocity vk0: This excitation transports charge and spin
ballistically. Because of inevitable impurities, after a sufficiently long time (t4tk)
the wavepacket degrades and the center of charge stops moving. The squared width
of the wavepacket continues to spread as hr2i / 3Dt; where D is the diffusion
constant, D ¼ v2ktk=3: Diffusion continues until the sample boundary is reached.
A d ¼ 1 computer experiment has been published for the case of weak disorder
[109]. One dimension has the extra feature that the diffusion does not last forever,
but evolves finally into localization with hr2i constant. In d ¼ 2 the same effect
should occur at extremely long times and distances, but lies beyond the power of
computer experiment for weak disorder.

Consider the same construction in d ¼ 3: The wavepacket should be built from
eigenstates in a narrow energy window of the delocalized part of the spectrum of a
very dirty metal, but the phases should be adjusted so that the resulting packet is
spatially localized at t ¼ 0: The time evolution is then computed, and it is found
that hr2i / 3Dt starts immediately and holds to the boundaries, with D 
 _a2=W

where W is the band-width of the metallic energy band (_=W is the time to hop to a
nearest neighbor). One should experiment with the phases of the different com-
ponent eigenstates trying to create a propagating packet. The effort will fail; no
packet can be made that shows ballistic propagation; The states of the dirty metal
are ‘‘intrinsically diffusive’’ and do not propagate ballistically farther than an in-
teratomic distance. Therefore one cannot define a mean free path, but if forced to
make a choice, one would have to say ‘ 
 a: Such states are not teetering on the
border of localization. They are generic in the spectrum of dirty metals. As you
move in the one-electron spectrum toward a band gap, there is a ‘‘mobility edge’’
where D! 0 and localization sets in. The localized states are a small minority and
are far from the Fermi level in ordinary metals.

Exact calculations of r for dirty metals can be done in one-electron approxi-
mation from Eq. (25) if the eigenstates jni are all known. If the states m; n are
localized, then this formula will correctly give s ¼ 0; because whenever two states
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are nearly degenerate, they will be separated spatially, with vanishing current
matrix elements hijjxjji ¼ 0: Successful calculations for alloys were reported by
various groups [33–35,105,110,111].

Now return to T40: At high T ; many relatively conventional crystalline metals
show resistivities like those in Fig. 10 that deviate from the linear T-dependence
predicted by Boltzmann theory. The reason is that the mean-free path ‘ has gotten
too short (less than 10 (A). To see how electron–phonon interactions can give short
mean-free paths, consider the lifetime broadening _=t ¼ 2plkBT : Since l is often of
order 1, and 2pkBT is 0.16 eV at room temperature, the levels are not necessarily
narrower than the separation of adjacent bands. Consider Nb3Sn, with l41 and 8
atoms in a cubic unit cell. The total band width of the 4d levels is about 10 eV, and
there are 30 d states in this band, for a mean level separation of 0.3 eV. Thus
individual quasiparticle levels are not sharply defined. The resistivity [100] deviates
strongly from the Bloch–Grüneisen form at room temperature. Although we un-
derstand why the theory fails, a useful theory to fix it [101–104,112] is not easily
constructed.

9. WEAK LOCALIZATION AND QUANTUM CORRECTIONS

A huge range of fascinating low T transport effects goes under the various names
‘‘weak localization’’, or ‘‘mesoscopic fluctuations’’, or ‘‘interaction effects’’ or
‘‘quantum corrections.’’ These effects show up as small corrections when resistivi-
ties are, large, but can be more significant when samples are small, especially in
d ¼ 1 or 2. An example is shown in Fig. 11 [113]. Quantum coherence is not just
a property of well-organized propagating Bloch states where coherence is easily
predictable. All solutions of t-independent Schrödinger equations are coherent.
Components of a wavefunction interfere with other components of a superposition
state. The coherence is only destroyed by t-dependent environmental perturbations
such as scattering by phonons. Let _=tinel be the lifetime broadening of a single-
particle state caused by an environmental inelastic process. At low T ; the scattering
rate gets very small. Electrons therefore remain coherent for a long time, and may
diffuse coherently over distances Lcoh ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Dtinel
p

where the diffusion constant D is
determined by elastic processes. In weakly disordered material, D 
 v2Ftelast while in
strongly disodered systems the diffusion constant is a2=thop where thop is the time to
hop to a nearest neighbor a distance a away. This time is of order _=W where W is
the band width. When the sample is smaller than Lcoh; large ‘‘mesoscopic’’ fluc-
tuations can be expected. The same wavefunction coherence is required for a single-
particle state to become Anderson-localized. This is why quantum coherency
corrections are called ‘‘weak localization’’ even though the system may be very far
from true localization. Electron–electron Coulomb interactions also become en-
hanced at low T by the effects of disorder. For perfect Bloch states, Coulomb
interactions are suppressed by Fermi degeneracy, _=tC 
 �FðkBT=�FÞ

2: However, if
the propagation is diffusive, two electron states, close enough to interact with each
other, see the same pattern of disorder and tend to propagate similarly, giving an
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enhancement of the Coulomb interaction. When samples are fairly clean, the
corrections to ballistic propagation are weak, and perturbative theories predict
leading corrections [114]. These theories go beyond conventional Fermi liquid
theory, and have been confirmed in numerous experimental tests.

10. NEUTRON, PHOTOEMISSION, AND INFRARED

SPECTROSCOPIES

Although these spectroscopies are not normally classified as transport, in fact they
can measure otherwise inaccessible transport properties. Consider the lifetime-
broadening of a phonon, as seen in infrared, Raman, or neutron scattering. The line
shape formula is a spectral function analogous to the one defined for electrons in
Eqs. (44), (45) and (48). On expects a broadened Lorentzian line shape, with
broadening (full width at half maximum) GQ of the normal mode Q given by 2 times
the imaginary part of the corresponding phonon Green’s function (see Fig. 12). This
is a transport property. The phonon distribution obeys a Boltzmann equation
written first by Peierls [115]. After linearizing, there is a rate of change due to
collisions of the phonon distribution function

@NQ

@t

� �

coll

¼ �
X

Q0

IðQ;Q0ÞdNQ0 (72)

Fig. 11. Absolute (left) and relative (right) resistivity versus temperature for polycrystalline

iron-deficient a-FeSi2 films of thickness 100 nm (circles), 70 nm (squares), and 35 nm (trian-

gles) [113]. The reduced and possibly saturated T-dependence characteristic of dirty metals is

seen at T4100K: At To50K; at the level of 1% of the total r; there is an interesting T-

dependent upturn obeying approximately the law A� BT1=2; characteristic of weak local-

ization effects in d ¼ 3:
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If the only normal mode out of equilibrium is the mode Q; then the right-hand side
is just �IðQ;QÞdNQ ¼ �GQdNQ and the population NQ returns to equilibrium
nQ ¼ ½expð_oQ=kBTÞ � 1��1 exponentially with time constant 1=GQ: By the usual
arguments of time-dependent perturbation theory used to construct scattering
terms in Boltzmann equations, one finds the formulas

Ganh
1 ¼

p

_2
X

23

jV 123j
2½ðn2 þ n3 þ 1Þdðo1 � o2 � o3Þ þ 2ðn2 � n3Þdðo1 þ o2 � o3Þ�

(73)

Gep
1 ¼

2p
_

X

23

jM123j
2ðf 2 � f 3Þdð_o1 þ �2 � �3Þ (74)

where 1; 2; . . . are short for Q1;Q2; . . . : Here f and n are the equilibrium Fermi-
Dirac and Bose–Einstein distributions, _o and � are the phonon and electron qua-
siparticle energies, and V 123 and M123 are the matrix elements for phonon–phonon
scattering (third-order anharmonicity) and phonon–electron scattering, each being
restricted by crystal momentum conservation (Q1 must have the same wavevector
modulo a reciprocal lattice vector as Q2 þQ3 or k3 � k2). The anharmonic matrix
element V 123 involves ð@3V N=@u1@u2@u3ÞA1A2A3; where Ai is the amplitude factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_=2Moi

p
of the ith normal mode, and V N the total nuclear potential energy

(the same order of magnitude as �F). The second derivative @2V N=@u1@u2 is of
order Mo2 where M is the nuclear mass. By counting factors appearing in these
equations, one can determine that the order of magnitudes are

Ganh
1 =oph ¼ 2pjV 123j

2F ðophÞnph 

kBT

VN

(75)

Gep
1 =oph ¼ 2pjM123j

2F ðophÞnpairs 

_oph

�F
(76)

where F ðophÞ is the average phonon density of states, approximately 1=_oph: These
equations use the previously mentioned size estimate Mðkk0Þ 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�F_oph

p
and the

corresponding estimate V123 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_ophÞ

3=V N

q
: Thus, we see that the two decay

modes for phonons are roughly the same size. An important difference is that Ganh

increases linearly with T at higher temperature, while Gep is roughly independent of
temperature. Other details affect the magnitude quite a lot. The electron–phonon
process depends on npairs 
 ðNð0Þ_oÞ

2; the number of electrons and holes within a

Q1

Q2

Q3

k2

Q1
k3

Fig. 12. The phonon (wiggly line) can decay into two phonons by the third-order anhar-

monic coupling V123 or into an electron-hole pair by the electron–phonon coupling M123:
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phonon energy o of the Fermi energy. Different metals have quite different den-
sities of states Nð0Þ at the Fermi energy – Pb and Nb differ by a factor of 3 (0.50
states/eV atom for Pb, 1.46 for Nb [7]) which appears squared in the phonon decay
rate. Shapiro et al. [116–118] were able to see the extra broadening of Nb phonons
caused by decay to electron-hole pairs, partly by exploiting the change in G when
the superconducting transition occurs (see Fig. 13). Habicht et al. [119], using
neutron echo techniques, saw no evidence for the electron-hole decay channel in Pb,
consistent with a 10 times smaller expected electron decay relative to Nb, and a
stronger anharmonic interaction.

Can we similarly measure electron equilibration rates 1=tk? Both photoemission
and infrared spectroscopy provide partial measurements. In photoemission, elec-
trons are ejected from a clean surface into vacuum where energy and wavevector are
measured. Since the energy and wavevector of the incident photon are known,
subtraction gives the energy and wavevector of the hole that was left behind, al-
lowing mapping of energy bands. Two complications make the process less ideal.
(1) The kosher theory of the process shows that a higher-order Green’s function is
needed [47,48]. (2) Since translational invariance is broken, crystal momentum kz

perpendicular to the surface is not conserved in the emission process – the sample
can absorb arbitrary amounts of perpendicular momentum. This complicates the
process of mapping bands and broadens the lineshapes. This second complication is

Fig. 13. (a) Change (for T4T c and ToT c) of the line shape detected by neutrons for an

acoustic phonon in the superconductor Nb3Sn (from Axe and Shirane, [117]). (b) Measured

line width as a function of T for various acoustic phonons in Nb (from Shapiro and Shirane,

[116]). (c) Theoretical [71] and experimental [118] phonon line widths for Nb.
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eliminated if the hole lies in a surface state (k is 2d and has no z component) or lies
in a quasi-2d band (�k depends very weakly on kz). Figure 14 shows data [120] for
2H-NbSe2, a quasi-2d metal with a strong electron–phonon interaction

(Tc ¼ 7:2K). The energy resolution is 4–6meV and k-resolution is 0:0025 (A
�1
:

Therefore, the intrinsic fuzziness of line shapes is larger than the resolution and
reflects actual broadening and shifting of bands in Aðk;oÞ: The data clearly show
both broadening associated with ImS and a rapidly varying shift associated with
ReS from electron–phonon interactions.

The lifetime broadening 1=tk ¼ �2ImS can be found from Boltzmann theory
using the diagonal part k ¼ k0 of the linearized collision integral, Eq. (49). The
answer is

_=tk ¼ 2p
X

k0Q

jMðkk0Þj2½ð1� f k0 þ nQÞ � dð�k � �k0 � oQÞ

þ ðf k0 þ nQÞdð�k � �k0 þ oQÞ� ð77Þ

where q ¼ k � k0: The alternate way to derive this is from the electron–phonon self-
energy, for which, as shown by Migdal [121], perturbation theory behaves well. The
self-energy to lowest order in the small parameter _oph=�el is

Sðk;oÞ ¼
X

k0Q

jMðkk0Þj2
1� f k0 þ nQ

oþ iZ� �k0 � OQ

þ
f k0 þ nQ

oþ iZ� �k0 þ OQ

� �
(78)

Fig. 14. Energy versus wavevector distributions of hole spectral weight (coded by color in

the original [120]) seen in photoemission spectroscopy of the layered metal 2H-NbSe2. The

wavevector scans include nine Fermi surface crossings. Near each crossing the hole dispersion

curve has a self-energy shift �olkðoÞ; and the shift decreases at larger o; leaving a kink in the

dispersion curve which measures the size of lk: The values lk 
 0:85	 0:15 are deduced at all

crossings except number 6 where the value 1:9	 0:2 is found.
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From the imaginary part evaluated at the band energy o! �k; we get the same
answer as in Boltzmann theory.

The consequences of the self-energy Eq. (78) have been seen experimentally in
many metals, especially in superconducting tunneling experiments using planar
junctions [122]. At low o; S has the form �lko:When lk is averaged over the Fermi
surface, one gets the electron–phonon coupling constant l which is of order 1 at low
T : At higher excitation o; l goes to zero, which causes the kink seen in the near-
Fermi-energy dispersion of Fig. 14.

Infrared spectroscopy is an alternate way to see the same physics as in planar
tunneling junctions, and improvements in infrared sources and detectors make this
method increasingly powerful. Holstein [123] argued that at infrared probing fre-
quencies o � oph there would be corrections to the Drude formula not contained in
the ordinary low-frequency Boltzmann approximation. The starting point is Kubo’s
formula Eq. (16) for the conductivity,

sðoÞ ¼
i

o
rðoÞ þ

ne2

m

	 

(79)

rðoÞ ¼ i

Z 1

0

dteioth½jðtÞ; jð0Þ�i (80)

This formula can be evaluated only for simple systems without interactions. To get
perturbative expressions for systems with interactions, a Wick-ordered (T̂) imag-
inary time (0pspb ¼ 1=kBT) version of rðoÞ; is used, namely

rðiomÞ ¼ �

Z b

0

dseiomshT̂ jðsÞjð0Þi (81)

rðiomÞ ¼ �
e2

b

X

kk0n

vk0xGðkk0; iom; ionÞGðk; ion þ iomÞGðk; ionÞ (82)

Gðk; ionÞ ¼
1

ion � �k � Sðk; ionÞ
(83)

When analytically continued from the imaginary (Matsubara) frequencies iom ¼

2pm=b and ion ¼ 2pðnþ 1=2Þ=b; with m and n integers, to just above the real
frequency axis oþ iZ (Z is infinitesimal), these functions become rðoÞ as in Eq. (80)
and G and S as in Eq. (44). The vertex function G is related to the self-energy S by a
Ward’s identity.

For electron–phonon systems, Holstein derived [22] the integral equation (gen-
eralized Boltzmann equation) for G at the Migdal level of approximation. Allen
[124] showed that the resulting conductivity had the form

sðoÞ ¼
ine2

mo

Z 1

�1

do0
f ðo0Þ � f ðo0 þ oÞ

o� Sirðo0 þ oþ iZÞ þ S�irðo0 þ iZÞ
(84)

The self-energy Sir is almost exactly S of Eq. (78). The difference is in a k-dependent
weighting factor wðk; k0Þ; Eq. (67) similar to ð1� cos ykk0 Þ; that appears in the
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Fermi-surface integration, and can be omitted to reasonable accuracy over much of
the spectral range. Infrared experiments [125,126] have seen Holstein’s predicted
deviations from simple Drude behavior.

Unfortunately, Eq. (84) lacks the simplicity of the Drude form Eq. (6). Götze and
Wölfle [127] suggested a simplified way to compute optical response in metals using
peturbation theory for a ‘‘memory function’’ MðoÞ defined as

sðoÞ ¼
ine2=m

oþMðoÞ
(85)

This is much closer to the Drude form, and in particular, the imaginary part of
MðoÞ is the generalization of the scattering rate 1=t:Götze and Wölfle gave a closed
formula for MðoÞ at the lowest level of approximation. In the dc limit, their for-
mula correctly reproduces the lowest-order variational solution of Boltzmann the-
ory. Higher-order approximations for MðoÞ are very messy, and the method is less
reliable than Eq. (84). Infrared experiments, together with Kramers–Kronig
analysis, can be used to extract MðoÞ; which is sometimes called an ‘‘optical
single-particle self energy’’ [128]. An example is in Fig. 15, which shows interesting
structure in MðoÞ similar to what may be expected in a self-energy. Comparing

Fig. 15. Real (parts b and d) and imaginary (parts a and c) parts of the memory function

M ¼ 2Sop measured by reflectance of untwinned single crystals of Bi2Sr2CaCu2O8þd; with
optimal (T c ¼ 96K; parts a and b) and somewhat overdoped (T c ¼ 82K; parts c and d)

oxygen concentrations [128]. Values are shown for five temperatures in each panel, namely,

from bottom to top (left panels) and top to bottom (right panels), 27K, 71K, 101K, 200K,

and 300K.
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Eqs. (84) and (85), one finds at low o the relation

MðoÞ � �o
dReSirðoÞ

do
� 2iImSirðoÞ ¼ liroþ i=tir (86)

In the dc limit M ! i=tir; the mass renormalization lir disappears and the correct
dc result is ne2tdc=m; where tdc is the dc limit of tir: Thus, in agreement with the
semiclassical Boltzmann approach, the mass renormalization does not enter dc
transport properties.

11. SEMICONDUCTORS AND THE METAL/INSULATOR

TRANSITION

In semiconductors, carriers of electrical current are much more dilute than in met-
als. They are thermally activated out of filled bands, or injected by light, charged
particles, or through tunnel barriers, or produced by intentional doping. Transport
theory in semiconductors therefore differs from theory for metals. One main dif-
ference is that theory is often motivated by device applications [129], involving
junctions and high fields, which takes us outside the linear ohmic regime [130].
Another difference is that dilute carriers and low temperatures opens up the fas-
cinating insulator to metal transition. And a third difference is that hopping pro-
vides an alternate mechanism to band transport.

In a pure semiconductor, electrical transport occurs via thermally activated elec-
tron and hole carriers ne ¼ nh / expð�Eg=2kBTÞ; with Eg the gap between occupied
valence and empty conduction bands. The conductivity s is written as neeme þ
nhemh: The mobilities me and mh of electron and hole carriers are typically quite
large. Hall measurements provide values for the carrier density, and mobilities can
be measured by drift velocity methods. In Si at 300K, electrons have me 

1:4� 103 cm2=Vs; and holes mh 
 4:5� 102 cm2=Vs [131]. Experimental values of
the temperature-dependent electron mobility are shown in Fig. 16 [132]. To explain
these results [133] in detail requires solution of Boltzmann’s equation, as discussed
in a classic paper by Herring and Vogt [134], and performed by many authors using
often Monte-Carlo procedures [132,135–137]. Silicon has electron carriers in 6
equivalent pockets, and holes in a heavy, a light, and a split-off hole band. One
needs the scattering matrix elements for both intervalley and intravalley scattering
by acoustic and optic phonons, making the total picture rather complex.

In doped semiconductors, the number of carriers no longer obeys ne ¼ nh; but is
determined by the temperature and the Fermi level which is fixed near the binding
energy of the dominant impurity type. At higher temperatures, carriers of the ma-
jority type (electron or hole depending on whether doping is n- or p-type) are
activated out of the impurity levels into band states which carry current by normal
quasiparticle propagation. Scattering by ionized impurities now enters and often
dominates.

At low temperatures, very interesting things happen to the transport properties of
doped semiconductors. First consider lightly doped silicon. Fig. 17 shows the low T
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conductivity of Si with 2:7� 1017 phosphorus donor atoms per cm3; and 0:8� 1015

boron acceptors [138]. Notice how small the conductivity is. The value of s closely
follows expð�12meV=2kBTÞ until the temperature is lowered to a frequency-de-
pendent point where the T-dependence becomes much weaker. Taking the dc limit,
one sees that the conductivity below 2K bends away from the activated line, to a
weaker T-dependence. The mechanism for this tiny residual conductivity is hopping
between localized impurity states. Most of the donor electrons are bound in hy-
drogenic localized orbitals with Bohr radius 
 14 (A; about 10 times smaller than the
typical donor atom separation. However, because of the 300 times smaller concen-
tration of boron acceptors, about 0.3% of the donor states become empty, the
bound phosphorus electron recombining with a bound boron hole, leaving a Pþ and
a B� ion. The Pþ sites offer a place for a bound electron (on a neutral P) to hop to.
This requires some non-zero thermal energy, because the donor P sites do not all
have the same donor binding energy. Their energies are perturbed by Coulomb
fields e2=�R of the neighboring Pþ and B� ions. At the dopant density of Fig. 17,
this spatially fluctuating potential has characteristic size of several meV. Therefore
there are empty higher energy sites and filled lower energy sites, separated by a
Fermi level, and zero conductivity at T ¼ 0: At finite temperature, random thermal
fluctuations occur. The dominant fluctuation is hopping of isolated electrons back
and forth between two nearby sites whose site energies happen to lie on either side
of the Fermi level. These fluctuations couple to an oscillatory E field, giving an ac

Fig. 16. Mobility versus temperature [132] for electrons in Si measured by time-of flight.

The closed circles from Canali et al. used a very pure sample (donor and acceptor densities


 1012 cm�3), while earlier data shown by other symbols have impurity densities larger by up

to 100, causing ionized impurity scattering to dominate at lower T : The power law m / T3=2

from acoustic phonon scattering [133] is in rough accord, but the data do not have any simple

power law.
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conductance like a collection of random capacitors coupled by resistors. At a lower
probability, there are longer range paths of electron propagation, giving a weakly
activated hopping conduction which goes to zero as T goes to zero.

Mott [139] predicted successfully the form of the weakly activated hopping con-
duction, sVRH / exp½�ðT0=TÞ1=4�; seen in many systems with localized charge car-
riers. The idea of ‘‘variable-range hopping’’ (VRH) is that the thermal energy kBT

available to promote a hop may be too small to give a decent rate for nearby hops
where wavefunctions c / expð�arÞ have large overlap. Especially at low T ; the hop
may have to go to a farther neighbor with smaller overlap. A compromise is reached
between the overlap expð�2aRÞ and the probability of available energy
expð�DEðRÞ=kBTÞ where DEðRÞ is the likely minimum energy hop available within
a radius R of the starting point. This energy scales as 1=Nð�FÞR

3: The optimum
distance is found by minimizing the product by R; and gives a likely range R0 /

½aNð�FÞkBT ��1=4: Weakly activated hopping with T1=4 is the result. Mott’s argu-
ments not only agree with many experiments [140] but have also been confirmed
theoretically by various methods [141–143].

Fig. 17. Conductivity versus 10K=T for Si with carrier density 10 times smaller than critical

[138]. The linear slope comes from thermal activation out of the bound impurity states, and

the strongly frequency-dependent low T limit comes from hopping.
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Contrast this weak conductance at low doping with the measured resistivity
shown in Fig. 18 [144] at phosphorus doping higher by 10. At a sharp critical donor
concentration nc 
 4� 1018 cm�3 [145,146], where the average separation of local-
ized impurity states drops to about 4 times the Bohr radius of these states, a
continuous transition begins. Electron states at the Fermi level delocalize, and the
T ¼ 0 conductivity is no longer 0. The material is no longer insulating, and so must
be called a ‘‘metal.’’ This ‘‘Anderson transition’’ [147] is now known to occur in 3d
but not in 1d where all states are localized no matter how weak is the disorder. The
intermediate case of 2d is marginal and still controversial [148].

The transition from localized to delocalized is somewhat subtle, in that it does
not show up in the single-particle density of states or in the single-particle Green’s
function averaged over a macroscopic system. Figure 19 [149] shows infrared spec-
tra for three different doping levels, all below the critical concentration. At light
doping, the hydrogenic impurity levels show up as lines in the infrared as expected.
At heavier doping, it is perhaps not surprising that the lines are broadened by
impurity overlap, which eliminates any sign of discrete levels at doping n 3 times
below nc: One might guess that the spectrum at the highest doping shown would
indicate delocalized states, but dc conductivity shows otherwise – it goes to zero as
T goes to zero, although at any achievable temperature it is far higher than the

Fig. 18. Resistivity versus T of uncompensated Si, for four phosphorus concentrations near

the critical concentration 
 3:75� 1018 cm�3 [144].
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conductivity in Fig. 17 at 1.2K. Before Anderson’s paper, it was assumed that
delocalization always occurred to some degree. After Anderson’s paper was un-
derstood and generalized by Mott and others [150], a different picture emerged. The
impurity levels are always localized when they are very dilute. As the concentration
increases, overlapping pairs and clusters occur. The excited states of these dopant
atoms overlap even more, and perhaps become delocalized, and probably merge
with the unoccupied conduction band. However, the nimp ground levels, which are
distributed in energy by random perturbations, have the ability to resist delocal-
ization, at least in the lower energy part of their spectrum. Somewhere higher in the
spectrum there is necessarily a sharply defined energy �c; called the ‘‘mobility edge,’’
which separates localized from delocalized states. The insulator to metal transition
occurs when the mobility edge coincides with the Fermi level. The measured re-
sistivity [151] at very low T is plotted in Fig. 20 for a series of samples across this
transition.

It is also known [152,153] that Coulomb interactions between electrons have
important consequences for the metal/insulator transition. Many of the experi-
mental studies have been on ‘‘uncompensated’’ samples where only one species of

Fig. 19. Absorption coefficient a (in cm�1) per donor (in cm�3) measured at T ¼ 2K for

uncompensated P-doped Si versus infrared photon energy [149]. Bound to bound impurity

transitions are seen at the lowest doping, and broaden due to overlap of neighboring impurity

states at heavier doping.
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dopant occurs. (‘‘Compensated’’ means that both n and p type dopants occur.) At
low and uncompensated doping and T ¼ 0; all dopant levels are singly occupied.
There are no ionized impurity atoms, and no doubly occupied impurity levels be-
cause of the significant on-site repulsion, comparable to the binding energy. As
doping increases and dopant levels start to overlap, the transition to metallic con-
duction may be more like a Mott transition [154,155], dominated by correlations,
instead of an Anderson transition, dominated by disorder. This is still a fascinating
and controversial subject. The data of Fig. 20 show a critical exponent sðT ¼ 0Þ /
ðn=nc � 1Þn with n 
 1/2. The theory of the pure Anderson transition (with
no Coulombic electron–electron interactions) predicts n to be close to 1. When
samples are intentionally compensated, most experiments seem to show an expo-
nent closer to 1, as is also seen in diluted metals like NbxSi1�x [108]. However, the
data are not necessarily good close enough to the transition to measure the critical
exponent [156].

12. COULOMB BLOCKADE

Coulomb interactions alter transport properties in many ways. In homogeneous 3d
metals, little influence is seen in low-frequency transport, apart from screening all

Fig. 20. Conductivity versus dopant density at two temperatures (30 and 3mK) plus (open

circles) the extrapolation to T ¼ 0 assuming a
ffiffiffiffi
T
p

law [151]. The curve is a fit with critical

exponent n ¼ 1=2: The measurements are all on the same sample, with dopant density

changes simulated by varying the applied stress.
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interactions and thus affecting the single-particle spectrum. Electron–phonon or
impurity scattering overpower Coulomb scattering as a relaxation mechanism, ow-
ing to the Pauli principle which suppresses Coulomb scattering by ðkBT=�FÞ

2 as
shown in Section 6.3.

More dramatic Coulomb effects are seen at low T in special situations, of which
the simplest is the ‘‘Coulomb blockade’’ of electron tunneling. Consider a case such
as Fig. 4 or 21c, with electrons tunneling through a small conducting island sep-
arated from both leads by tunnel barriers. The addition of a single electron to the
island raises the electrostatic energy of the island by DU I ¼ e2=2Ceff where Ceff is
the total island capacitance. A gate electrode coupled to the island capacitively with
capacitance Cg and gate potential V g; can raise and lower the energy of this added
electron by DUg ¼ eðCg=Ceff ÞVg: If (1) source-drain bias VSD; (2) temperature kBT ;
and (3) single-particle electron level spacing D�I on the island, are all small com-
pared to DU I; conductance through the island is suppressed. The suppression is
periodically modulated by the gate. Whenever the gate voltage is tuned so that the
energy for adding one electron aligns with the source and drain electrode Fermi
level, the conductance peaks. This happens periodically with spacing DV g ¼ e=Cg;
and corresponds to successive increases of the island’s net electron charge. These
effects in the single-particle tunneling regime were predicted by Averin and Likha-
rev [157] and seen first by Fulton and Dolan [158]. The device is called a ‘‘single-
electron transistor,’’ and an ‘‘orthodox theory’’ [159] gives accurate fits to data.
When the island level spacing D�I is small compared with kBT ; a simple theoretical
expression due to Kulik and Shekhter [160] applies,

G ¼ Gmax
DU=kBT

sinhðDU=kBTÞ
(87)

where DU ¼ DUg � DU I and 1=Gmax ¼ 1=G1 þ 1=G2 is the peak conductance, with
G1 and G2 the conductances of the tunnel barriers to the source and drain elec-
trodes.

Figure 21(a and b) shows the conductance versus gate voltage for a junction of
metallic Al electrodes and an Al island (size 
 ð40 nmÞ3) separated by an aluminum
oxide tunnel barrier [161]. The conductance peak Gmax is smaller by 100 than the
quantum unit G0 ¼ 2e2=h seen in the ballistic point contact, Fig. 3. This indicates
that tunneling rather than ballistic conductance is occurring. The level spacing of
Al valence states in such an island is 
 3mK; less than the temperatures used (400,
200, and 6mK in panel (a), and 300, 200, 100, and 50mK in panel (b)). The data on
panel (b) fit very well to the theory of Averin et al. [162] which extends the formula
of Kulik and Shekhter to include ‘‘cotunneling,’’ a higher-order process where
tunneling across both barriers is coordinated, leaving an electron-hole pair on the
island. This process increases with T quadratically as the phase space for the elec-
tron-hole pairs increases. Figure 21d, for a smaller Al island [163], shows the more
complete story for source drain voltages which are no longer small compared with
the other energies, and when finite level spacing due to island size quantization
starts to set in.
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13. COULOMB GAP

Important but more subtle effects of the Coulomb interaction are seen in systems
near a metal to insulator transition, and appear as a suppression of electron density
of states Nð�Þ for small j�� mj where m is the Fermi level. Efros and Shklovskii [152]
found that Nð�Þ vanishes as j�� mjp with p 
 2 when the Fermi level lies on the
insulating side of the transition. Altshuler and Aronov [153] and McMillan [164]
found a cusp-like suppression, Nð�Þ ¼ Nð�FÞ½1þ ðj�� mj=dÞ1=2� when �F lies on
the metallic side. Tunneling conductance of boron-doped silicon near the metal

Fig. 21. Coulomb blockade of electron tunneling through a metallic Al island separated by

oxide from Al electrodes [161,163]. Panels (a) and (b), for small source-drain voltage

VSD ¼ V , show conductance versus gate voltage at various temperatures: from top to

bottom, T = 400 mK, 200 mK, and 6 mK in (a), and T = 300 mK, 200 mK, 100 mK, and

50 mK in (b). The linear conductance peaks whenever the gate voltage is tuned to a point

where one more electron can hop onto the island without increase of energy. This is indicated

in the schematic diagram (c) where the energy levels of the island are denoted as continua

with different discrete island Fermi levels corresponding to additional electrons 1; 2; 3 on the

island. For infinitesimal VSD; conductance is shut off unless the Fermi level of the island for

some change state n aligns with the source and drain chemical potentials mS; mD: Panel (d)
shows data at 4.2K for a very small island. The lines are contours of constant current in

increments of 50 pA. Data of panels a and b (on bigger islands) correspond to the horizontal

line V ¼ VSD ¼ 0: At constant but non-zero VSD; current can flow for a non-zero interval of

gate voltage. The width of this interval increases with VSD giving diamond-shaped openings

of blocked current. Fine structure is caused by energy level discreteness on the island.
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insulator transition at nc ¼ 4� 1018 cm�3 measured by Lee et al. [165–167], shown
in Fig. 22, confirm these ideas. In the tunneling regime, with a barrier height large
compared to bias voltage, the tunneling conductance GðV Þ is proportional to the
thermally broadened density of states

R
d�Nð�Þ@f ð�� eV Þ=@V : Very similar effects

were seen for amorphous NbxSi1�x near the metal to insulator transition at x ¼

0:115 by Hertel et al. [108].
On the insulating side, the nearly complete depletion for � near m is called a ‘‘soft’’

Coulomb gap. The explanation by Efros and Shlovskii is very simple. Suppose there
are localized electron states at random positions Ri; with a random distribution of
energies hi; before adding the Coulomb repulsion between the electrons which will
occupy some of these sites. For each occupied pair, there is a repulsive energy
vij ¼ e2=kRij where k is the dielectric constant and Rij the distance. The problem is
to find the stable occupancy assuming fewer electrons than sites. The energy to
remove one electron, leaving the rest fixed, is xi ¼ hi þ

P
jvijnj where nj is the

occupancy of site j: The energy to add one more electron in a previously empty state
is xk ¼ hk þ

P
jvkjnj : The density of states is

Nð�Þ ¼ �
1

p

X

i

ImGði; �Þ ¼
X

i

dð�� xiÞ (88)

where the single particle removal energy is used for xom and the single particle
addition energy for x4m; as is usual for the spectral density of states defined from the
Green’s function, and measured in the tunneling experiment. Efros and Shklovski
point out that the energy difference D between the N particle ground state and the
excited state with state i removed and state j added is xj � xi � vij : Although the first
part xj � xi is positive, the second part is negative, and it is not obvious that the sum
is positive for small jxj � xij: In fact, the only way to guarantee that D is always
positive is for the ground state occupancy to be organized such that the states xi are
depleted near m:

The Altshuler–Aronov argument for the cusp on the metal side is quite differ-
ent, and relies on being able to compute perturbatively around the metallic
state with good Fermi-liquid behavior and no disorder. Thus, there is no
evident reason why the theoretically predicted anomalies on the two sides of
the transition should be related. Experiment shows forcefully the unity of the phe-
nomena. For TX10K (shown in panel (a) of Fig. 22) the resistivity does
not distinguish insulator from metal. Tunneling conductances measured at low T

show Nð�Þ recovering rapidly from the low � anomaly and behaving similarly
for metal and insulator. It is reminiscent of the resistivity of high T c superconductors
in Fig. 8, which at higher T look similar for metal and insulator [84], defying theory.
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[91] G. Grüner and A. Zawadowski, Magnetic impurities in non-magnetic metals, Rep. Prog. Phys. 37,

1497 (1974).

[92] K.G. Wilson, The renormalization group: Critical phenomena and the Kondo problem, Rev. Mod.

Phys. 47, 773–840 (1975).

[93] H.R. Krishna-murthy, J.W. Wilkins and K.G. Wilson, Renormalization-group approach to the

Anderson model of dilute magnetic alloys. I. Static properties for the symmetric case, Phys. Rev. B

21, 1003–1043 (1980).

[94] N. Andrei, K. Furiya and J.H. Lowenstein, Solution of the Kondo problem, Rev. Mod. Phys. 55,

331–402 (1983).

[95] P. Nozieres, A ‘fermi-liquid’ description of the Kondo problem at low temperatures, J. Low. Temp.

Phys. 17, 31–42 (1974).

[96] A.C. Hewson, The Kondo problem to Heavy Fermions (Cambridge University Press, Cambridge,

1997).

[97] K. Nagaoka, T. Jamneala, M. Grobis and M.F. Crommie, Temperature dependence of a single

Kondo impurity, Phys. Rev. Lett. 88, 077205 (2002).

[98] D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Ambusch-Magder, U. Meirav and

M.A. Kastner, Kondo effect in a single-electron transistor, Nature 391, 156–159 (1998).

[99] J.H. Mooij, Electrical conduction in concentrated disordered transition-metal alloys, Phys. Stat.

Sol. a17, 521–530 (1973).

[100] Z. Fisk and G.W. Webb, Saturation of the high-temperature. Normal-state electrical resistivity of

superconductors, Phys. Rev. Lett. 36, 1084–1086 (1976).

[101] O. Gunnarsson, M. Calandra and J.E. Han, Colloquium: Saturation of electrical resistivity, Rev.

Mod. Phys. 75, 1085–1099 (2003).

Electron Transport 215



[102] M. Calandra and O. Gunnarsson, Electrical resistivity at large temperatures: Saturation and lack

thereof, Phys. Rev. B 66, 205105:1–20 (2002).

[103] M. Calandra and O. Gunnarsson, Violation of Ioffe-Regel condition but saturation of resistivity of

the high-T c cuprates, Europhys. Lett. 61, 88–94 (2003).

[104] O. Gunnarsson and J.E. Han, The mean free path for electron conduction in metallic fullerenes,

Nature 405, 1027–1030 (2000).

[105] R.H. Brown, P.B. Allen, D.M. Nicholson and W.H. Butler, Resistivity of strong-scattering alloys:

absence of localization and success of coherent-potential approximation confirmed by exact su-

percell calculations in V1�xAlx, Phys. Rev. Lett. 62, 661–664 (1989).

[106] B.W. Dodson, W.L. McMillan, J.M. Mochel and R.C. Dynes, Metal-insulator transition in dis-

ordered Germanium-Gold alloys, Phys. Rev. Lett. 46, 46–49 (1981).

[107] W.L. McMillan and J. Mochel, Electron tunneling experiments on amorphous Ge1�xAux, Phys.

Rev. Lett. 46, 556–557 (1981).

[108] G. Hertel, D.J. Bishop, E.G. Spencer, J.M. Rowell and R.C. Dynes, Tunneling and transport

measurements at the metal-insulator transition of amorphous Nb: Si, Phys. Rev. Lett. 50, 743–746

(1983).

[109] P.B. Allen and J. Kelner, Evolution of a vibrational wavepacket on a disordered chain, Am.

J. Phys. 66, 497–506 (1998).

[110] R. Kahnt, The calculation of the resistivity of liquid and amorphous transition metals via the

Landauer formula, J. Phys. C: Condens. Matter 7, 1543–1556 (1995).

[111] R. Arnold and H. Solbrig, Disorder-induced resistivity of liquid and amorphous transition metals

calculated within the scattered-wave supercell concept, J. Non-Cryst. Solids 205–207, 861–865

(1996).

[112] P.B. Allen and B. Chakraborty, Infrared and d.c. conductivity in metals with strong scattering:

non-classical behavior from a generalized Boltzmann equation containing band mixing effects,

Phys. Rev. B 23, 4815–4827 (1981).

[113] K.K. Larsen, M.V. Hove, A. Lauwers, R.A. Donaton, K. Maex and M.V. Rossum, Electronic

transport in metallic iron disilicide, Phys. Rev. B 50, 14200–14211 (1994).

[114] B.L. Altshuler, P.A. Lee and R.A. Webb (Eds), Mesoscopic Phenomena in Solids (North-Holland,

Amsterdam, 1991).

[115] R.E. Peierls, On the kinetic theory of thermal conduction in crystals, Ann. Phys. (Leipzig) Ser.

5(3), 1055–1101 (1929).

[116] S.M. Shapiro, G. Shirane and J.D. Axe, Measurements of the electron–phonon interaction in Nb

by inelastic neutron scattering, Phys. Rev. B 12, 4899–4908 (1975).

[117] J.D. Axe and G. Shirane, Influence of the superconducting energy gap on phonon linewidths in

Nb3Sn, Phys. Rev. Lett. 30, 214–216 (1973).

[118] N. Wakabayashi, Phonon anomalies and linewidths in Nb at 10K, Phys. Rev. B 33, 6771–6774

(1986).

[119] K. Habicht, R. Golub, F. Mezei, B. Keimer and T. Keller, Temperature-dependent phonon life-

times in lead investigated with neutron-resonance spin-echo spectroscopy, Phys. Rev. B 69,

104301:1–8 (2004).

[120] T. Valla, A.V. Fedorov, P.D. Johnson, P.-A. Glans, C. McGuinness, K.E. Smith, E.Y. Andrei and

H. Berger, Quasiparticle spectra, charge-density waves, superconductivity, and electron–phonon

coupling in 2H-NbSe2, Phys. Rev. Lett. 92, 086401:1:4 (2004).

[121] A.B. Migdal, Interaction between electrons and lattice vibrations in a normal metal, Sov. Phys.

JETP 7, 996–1001 (1958).

[122] W.L. McMillan and J.M. Rowell, Tunelling and Strong-Coupling Superconductivity, Supercon-

ductivity (M. Dekker, New York, 1969), chap. 11.

[123] T. Holstein, Optical and infrared volume absorptivity of metals, Phys. Rev. 96, 535–536 (1954).

[124] P.B. Allen, Electron–phonon effects in the infrared properties of metals, Phys. Rev. B 3, 305–320

(1971).

[125] R.R. Joyce and P.L. Richards, Phonon contribution to far-infrared absorptivity of superconduct-

ing and normal lead, Phys. Rev. Lett. 24, 1007–1010 (1970).

P. B. Allen216



[126] B. Farnworth and T. Timusk, Phonon density of states of superconducting lead, Phys. Rev. B 14,

5119–5120 (1976).
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