Physics 555 Fall 2003
Solid State Physics
Homework Assignment # 6, Due Wednesday Nov. 19

1. Band Structure of Silicon, (100) direction

The table below gives the Hamiltonian matrix (k) for diamond structure
C, Si, or Ge, in the “minimal basis” nearest-neighbor tight-binding model.
There are 8 Bloch orbitals in the basis, labeled by a = s,z,y,2 and by 1
or 2 to indicate the two atoms in the unit cell.

sl s2 x1 x2 vyl y2 z1 72
sl | E, Vst 0 Vsp.92 0 Vsp.93 0 Vsp.94
82 | Vgt E —Vepgs 0 —Vipgs 0 —Vspgi 0
x1|0 —Vspg2 Ep Vezn 0 wag4 0 wa.93
x2 | Vipgs 0 Vez9i  Ep Vewg: O Veygs O
yl |0 —Vsp9d3 0 wag4 Ep Vea gt 0 wag2
¥2 | Vipgs 0 Veygs 0 Veagi  Ep Veygs 0
z1 |0 —Vspda 0 wa.93 0 wag2 Ep Vea gt
72 | Vipgi 0 Veygs O Veygs 0 Veagi  Ep

In this table, the parameters g; contain the phase factors that accumulate
from hopping along the four tetrahedral bonds when the Bloch state has
wavevector k = (kg, ky, k), namely:

glzl(zkd1+ezkd2+ezkd3+ezkd4)
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where the bonds J; are defined as

- —.

d = (@/9)(1,1,1) do = (a/4)(L,T,1) ds = (a/4)(T,1,T) ds = (a/4)(T,T,1).

The parameters Vg, etc., are Hamiltonian matrix elements of atomic or-
bitals which are defined as

Vss = 4Hsso’
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Figure 1: Empirical pseudopotential band structure of silicon, fitted to optical
data by Chelikowsky and Cohen. The dashed bands used a local approximation,
and the solid bands are an improved non-local fit.

Vip = 4Hypo [ V3
Vie = (4pro/3) + (SVppﬂ'/?’)
wa = (4pra/3) - (4VPP7T/3)

These combinations occur because of the geometric arrangement of bonds
along (111)-type directions and orbitals defined along (100)-type direc-
tions. We should expect Vs < 0, Vg > 0, Vi > 0, and V, > 0. The
signs are negative for the ss integral because the product of wavefunc-
tions is positive and the Hamiltonian is negative in the region of overlap.
For the others, the product of wavefunctions is negative. For the integral
H,p,, it is necessary to define it with the s function to the left and the
p; function to the right along the z axis. Note: This matrix and the
corresponding notations are from Yu and Cardona, p84 ff. However, there
are numerous typographical errors which hopefully are all corrected here.
Also, a more convenient ordering of rows and columns is used here.

a. This matrix uses Bloch basis functions defined as
- B . S
|kaT >= N Z eF g (r — 1 - 7)
7

where a labels the atomic orbital (s, or z, or y, or z) and ¥ has
two values, 1 = 0 and 7» = (1,1,1)/4. There is an (unnecessary



but convenient) phase factor exp(ik - 7) which is not needed to give
the Bloch property. This factor sometimes simplifies the appearance
of the Hamiltonian matrix, and is therefore included here, but is
optional — omitting this phase factor would not change the answers.
Explain the matrix elements < s1|#|s2 > and < s1|H|z2 >.

b. For the wavevector k = (27 /a)(¢,0,0) some of the g; vanish and the
matrix simplifies. Write the simplified form of the matrix. Note:
It will break into two 4x4 matrices. A study of the accompanying
figure (from Chelikowsky and Cohen, Phys. Rev. B 10, 5095 (1974))
shows that bands in the (100) direction (this direction is called A)
are labeled by quantum numbers (A, AL, Az, Ay, AL, Aj) (these are
analogs of the atomic quantum number £.) The state labeled Aj is
doubly degenerate, and the rest are singly degenerate. These symme-
try labels indicate that it is possible to use symmetry to reduce the
two 4x4 matrices to four 2x2 matrices. One will contain the two A
states, one will contain the two A} states, one will contain the two
Ay states of type a, and one will contain the two Ay states of type
b, where a and b refer to some extra quantum number (analogous to
m) used to designate the two partners of the doubly degenerate Aj
manifold.

c. It would not be possible to solve an arbitrary 4 x4 matrix by the method
of “guess the eigenvectors.” But since we know from the argument
above that symmetry can be used to reduce them to 2x2 matrices,
we can be sure that the eigenvectors contain some symmetry. Even
without knowing the details, we are allowed to guess and have the
agsurance that this can work. I suggest the following guesses:

a a a a

_ a _ -« _ a | —«a
|A>= is |B >= i |IC >= is |D >= i8
i —i8 —if i8

The first two of these are othogonal and can be used for one of the 4
by 4 matrices, and the last two are orthogonal and can be used for
the other. Show that these vectors can be used to reduce the problem
to four 2x2 matrices.

d. Find the eight eigenvalues and associate them with the six lowest curves
on the accompanying figure between I' and X.

. Band Velocity

Crystalline solids differ from other large molecules or glasses in that the
single particle eigenstates can propagate; they can have non-zero cur-
rents. There are two different ways to understand the fact that the
Bloch state labeled (k,n) (n is the “band index”) has velocity v(k,n) =
(1/h)de(k,n) /8. In both approaches we assume the one-electron Hamil-
tonian H = p*/2m + V.



a. Consider a wave-packet built from a single band n, using states near
some wavevector k:

Y(Ft=0)=>_ Az (7t =0)
k‘?

where the envelope function A(k;; ) can be taken to be a Gaussian
exp[—b2(K' — k)?] where the distance b is reasonable large compared
with the lattice constant a. Show that as time evolves, the wave-
packet propagates and find the velocity of propagation.

b. The previous proof is the best. But it is also possible to prove by an
algebraic manipulation that the Bloch state |k,n > has the group
velocity ﬁ(E, n) given by the expectation value < E,n|ﬁ/m|E,n >,
where P is the momentum operator. The proof uses a slight modi-
fication of the single particle Schrédinger equation. If we write the
Bloch eigenstate 9z, (7) as exp(ik-7) times a periodic function u in (™),
then the periodic function obeys the equation

-

H(k)ug, = e(kn)ug,

where the new Hamiltonian H (k) is

- 2 Rhk-p Rk
’H(k)z(p—+—p+ >+V

2m m 2m

and serves as the Hamiltonian for the states labeled by k. We can
also use the Feynman theorem

< ¢(a)|7gc(ya)|¢(a) 2 =< ¢(a)|0H(0)/Bal(a) >

where a is a parameter, not an operator, and |¢)(a) > is an eigenvec-
tor of H(a). Construct the proof.



