Physics 555 Fall 2003

Solid State Physics

Problem Set # 8, Due Friday Dec. 12

Reminder: Final exam Monday Dec. 15, 8:00-11:30am

1. Cooper pair radius.
 The radial part of the wave-function of a Cooper pair is
 \[\psi(\vec{r}) = \frac{1}{\sqrt{V}} \sum_k g(k) e^{i\vec{k} \cdot \vec{r}} \]
 where \(\vec{r} \) is the relative coordinate \(\vec{r}_2 - \vec{r}_1 \) of the opposite spin electrons of the pair.

 a. Show that
 \[< r^2 > \equiv \int d^3r \ r^2 |\psi(\vec{r})|^2 = \sum_k |\vec{\nabla}_k g(k)|^2. \]

 b. Use the solution found in class,
 \[g(k) = \begin{cases} \frac{C}{2\epsilon_k + \Delta} & \text{when } 0 < \epsilon_k < \Theta \\ 0 & \text{otherwise} \end{cases} \]
 where \(\Delta \) is the binding energy, \(\epsilon_k = \hbar^2 k^2 / 2m - \epsilon_F \), and \(C \) is a normalization constant, to get the result (valid for \(\Delta \ll \Theta \))
 \[\xi \equiv < r^2 > \approx \frac{\hbar v_F}{\Delta}. \]
 Evaluate the coefficient \(c \). Note that \(k_F \xi \approx \epsilon_F / \Delta \), which is a large number, typically \(10^4 \).

2. Fermi-Dirac Distribution
 As practice using creation and destruction operators, derive the Fermi-Dirac distribution in the following way. First we define a particular version of an average. Let \(< \hat{A} >_0 \) mean the canonical thermal average expectation of the operator \(\hat{A} \) in an equilibrium system defined by a Hamiltonian \(\mathcal{H}_0 \), that is
 \[< \hat{A} >_0 = \frac{\text{tr} \hat{A} e^{-\beta(\mathcal{H}_0 - \mu \hat{N})}}{\text{tr} e^{-\beta(\mathcal{H}_0 - \mu \hat{N})}}. \]
 Let \(\mathcal{H}_0 \) be a single particle system \(\mathcal{H}_0 = \sum_i e_i c_i^\dagger c_i \) whose single-particle states are labeled by quantum numbers \(i = (\ldots) \) where the list includes the \(\hat{z} \) component of spin in some convenient coordinate system. The trace operation goes over the states \(|n_1, n_2, \ldots \rangle \) of \(\mathcal{H}_0 \). Show that \(< c_i^\dagger c_i >_0 = 0 \) (where states 1 and 2 are different, and that \(< c_1^\dagger c_1 > = f_1 \) (where \(f_1 \) is the Fermi-Dirac distribution.)
3. **Electron-electron interaction**

For the same system, evaluate $< \hat{V} >_0$, where

$$\hat{V} = \frac{1}{2} \sum_{a,b,c,d} <ab|vd|cd> c_{a\sigma}^+ c_{b\sigma} c_{c\sigma}^+ c_{d\sigma}^+.$$

That is, write an expression for $< \hat{V} >_0$ in terms of matrix elements $<ab|vd|cd>$ and other defined quantities such as single-particle energies ϵ_a, single-particle equilibrium distributions f_a etc. Write out the \vec{r}-space integral form of the required matrix elements. Explain the relation to Hartree-Fock theory (in general, this is not the full Hartree-Fock energy.) Notice the role of spin in the exchange term.