Physics 555 Fall 2003 2x2 matrix algebra for BCS theory

In BCS theory we need eigenvalues and eigenvectors of a matrix of the type
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where ¢ = ¢, — p and A is the complex gap, |A|exp(i¢). Clearly the eigenvalues are

+F where £ = (/2 4+ |A|%. It is convenient to express this matrix in terms of the
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The matrix becomes

Pauli matrices

M = E(7- §)

where the unit vector 7 is given by
7 = (sin 6 cos ¢, sin § sin ¢, cos ),

and € and ¢ are defined in the picture below.
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The matrix 7 - & can be rotated until ¥ is 2. The eigenvalues are thus £1. The

rotation matrix U is defined as
o, = U(F-&’)UJr or 7-=Ule,U

and is the product of two simple rotations, UyU;, where
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The rotation U; is around the z-axis by angle —¢. This causes 7 - & to rotate such that

the new vector 7 lies in the xz plane. The rotation U; is around the y axis by angle

—60. This causes the new vector 7' to line up with the z axis. The resulting conjugate
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rotation matrix U

contains as its columns the two orthonormal eigenvectors |1 > and |—1 > of - &. The
eigenvectors could, of course, each be multiplied by an additional overall phase factor

exp(1t1) and exp(ith_1).



